! Pm‘EﬁTﬁNTM FERSEIENTMM

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALI FORNI A

THESI S

BENCHVARKI NG AND ANALYSI S OF THE SRC- 6E
RECONFI GURABLE COMPUTI NG SYSTEM

by
Kendrick R WMacklin

Decenmber 2003

Thesi s Advi sor: Dougl as Fouts
Co- Advi sor: Theodore Lew s

Approved for public release; distribution is unlimted

THI'S PAGE | NTENTI ONALLY LEFT BLANK

REPORT DOCUMENTATI ON PAGE For m Approved OVB No.

0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per
response, including the time for review ng instruction, searching existing data sources, gath-
ering and maintaining the data needed, and conpleting and reviewing the collection of informa-
tion. Send comments regarding this burden estimate or any other aspect of this collection of
informati on, including suggestions for reducing this burden, to Wshington headquarters Ser-
vices, Directorate for Information Operations and Reports, 1215 Jefferson Davis Hi ghway, Suite
1204, Arlington, VA 22202-4302, and to the O fice of Managenent and Budget, Paperwork Reduction
Proj ect (0704-0188) Washi ngt on DC 20503.

1. AGENCY USE ONLY (Leave bl ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Decenber 2003 Master’s Thesis

4. TITLE AND SUBTI TLE: Benchmar ki ng and Anal ysis of the]|5. FUND NG NUMBERS
SRC- 6E Reconfi gurabl e Conputing System

6. AUTHOR(S) Kendrick R Macklin

7. PERFORM NG ORGANI ZATI ON NAME(S) AND ADDRESS(ES) 8. PERFORM NG ORGANI ZATI ON
Naval Postgraduate School REPORT NUMBER
Mont erey, CA 93943-5000

9. SPONSORI NG / MONI TORI NG AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORI NG MONI TORI NG
N A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do
not reflect the official policy or position of the Departnent of Defense or the U . S. Governnent.

12a. DI STRI BUTI ON / AVAI LABI LI TY STATEMENT 12b. DI STRI BUTI ON CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maxi mum 200 wor ds)

This thesis eval uates the useful ness of the SRC- 6E reconfigurabl e computing
system for a radar signal processing application and docunents the process of creat-
ing and inporting VHDL code to configure the user definable logic on the SRC-6E. A
fal se-target radar-imagi ng al gorithmwas chosen and inplemented on the SRC-6E. Data
fromalternative conputational approaches to the sane problem are conpared to deter-
m ne the effectiveness of SRC-6E solution. The results show that the inplenmentation
of the algorithm does not provide an effective solution when executed on the SRC- 6E.
An evaluation of the SRC-6E difficulty of use is conducted, including a discussion of
required skills, experience and devel opnent tines. The algorithmtest code and col -
|l ected data are included as appendices.

14. SUBJECT TERVB 15. NUMBER OF
Benchmar k, Reconfigurabl e Conputing, VHDL, SRC- 6E, FPGA, Fal se Radar PAGES 149
Target Synthesis

16. PRI CE CODE

17. SECURI TY 18. SECURI TY 19. SECURI TY 20. LI M TATI ON
CLASSI FI CATI ON OF CLASSI FI CATION OF TH S CLASSI FI CATI ON OF OF ABSTRACT
REPORT PAGE ABSTRACT
Uncl assi fi ed Uncl assi fied Uncl assi fi ed UL
NSN 7540- 01- 280- 5500 St andard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Approved for public release; distribution is unlimted

BENCHVARKI NG AND ANALYSI S OF THE SRC- 6E RECONFI GURABLE
COVPUTI NG SYSTEM

Kendrick R Macklin

Li eutenant, United States Naval Reserve
B.S., San Diego State University, 1997

Submtted in partial fulfillment of the
requi renents for the degree of

MASTER OF SCI ENCE | N ELECTRI CAL ENG NEERI NG

fromthe

NAVAL POSTGRADUATE SCHOCL
Decenmber 2003

Aut hor : Kendrick R Macklin

Appr oved by: Dougl as Fouts
Thesi s Advi sor

Ted Lew s
Co- Advi sor

John P. Powers

Chai r man

Depart ment of Conputer and El ectri cal
Engi neeri ng

TH'S PAGE | NTENTI ONALLY LEFT BLANK

ABSTRACT

This thesis evaluates the useful ness of the SRC 6E re-
configurable conmputing systemfor a radar signal processing
application and docunents the process of creating and im
porting VHDL code to configure the user definable |ogic on
the SRC-6E. A false-target radar-imgi ng al gorithm was
chosen and i nplenented on the SRC-6E. Data from alterna-
tive conputational approaches to the sane problemare com
pared to determ ne the effectiveness of SRC-6E sol ution
The results show that the inplenentation of the al gorithm
does not provide an effective solution when executed on the
SRC-6E. An evaluation of the SRC-6E difficulty of use is
conducted, including a discussion of required skills, ex-
peri ence and devel opnent tinmes. The algorithmtest code
and collected data are included as appendi ces.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTT ON . . . e e e e e e e 1
A PURPOSE e 1
B. FALSE TARGET RADAR | MAG NG ALGORI THM. 1
C FALSE- TARGET RADAR-I MAG NG CHIP DESIGN............. 2
D. FALSE- TARGET RADAR- | MAQ NG PROGRAM DESIGN. 5
E. REMAI NI NG CHAPTER QUTLINE i 7
SRC- 6E ARCHI TECTURE AND SOFTWARE ENVI RONMENT 9
A INTRODUCTI ON . . .o e e e e e e 9
B. SRC- 6E HARDWARE OVERVIEW. 9
C. SOFTWARE ENVI RONMENT e 11
1. OQperating System........ 11
2. Programm ng Environment 11
D. MAJOR DOCUMENTATION. . .. e e e 12
1. SRC- 6E C Programm ng Environnment Guide....... 12
2. SRC- 6E Fortran Programm ng Environnent Cuide. 12
3. SRC-6E MAP Hardware Quide 12
4. SRC- 6E MAP Macro Devel opers Guide............ 12
5. Macro Data Sheet Library..................... 13
DEVELOPMENT AND TESTING IN VHDL W TH ALDEC ACTI VE- HDL
D 2 15
A I NTRODUCTT ON e e e e e e e e 15
B. FUNCTI ONAL BLOCKS e e e e e 15
1. DType Flip Flops........ 15
2. Adder s 15
3. Look-Up Table (LUT) 16
4. Control Logic Block (CLB) 16
5. Gain Shifter 16
6. One Range Bin........ 18
7. Two Range Bins.......... 18
8. Four Range Bins 18
PORTI NG THE VHDL CODE TO THE SRC-6E.................... 19
A I NTRODUCTT ON e e e e e e 19
B. THE SRC-6E FILE TYPES. 19
1. Nf O . 19
2. bOX . . 19
3. P ot et e 20
4. O 20
5. makefile 20
6. Vhd 20
7. O her TYpPeS .. e 20

C. CODE DEVELOPMENT . . .o e e e 21
1 Version 1.0 21
2 Version 1.1 21
3 Version 1.2 22
4 Version 2.0 22
5 Version 2. 1 22
6 VersiOn 2. 2 ... 23
7 Version 2.3 23
8 Version 2.4 24
9. Version 2.5 24
10. Version 3.0 25
D. SYNTHESI ZABLI TY . . .o e 25
1. Gain Shifter Changes, 25
2. LUT Changes e e e 26
E. TIMNG FAILURES e 26
1. Single 8-bit CLAH......, 27
2. Three 4-bit CLAH. 28
3. Two 4-bit and one 8-bit CLAH.................. 28
F. MEMORY ALLOCATION CHANGESt 28
V. DATA COLLECTION AND TIM NG ANALYSIS i 31
A INTRODUCTI ON . . .o e e e e 31
B. BENCHVARK TEST PLATFORMS i 31
1. C Program Executed on a Wndows-based
Machi ne 31
2. C Program Executed on the SRG-6E............. 31
3. VHDL Code on the SRC-6E MAP.................. 31
C. TI M NG DATA COLLECTION METHOD. 32
D. TIMNG DATA ANALYSI S. ... e 33
1. Methods 33
2. ResUlts 33
3. CoNnClUSIONS 37
VI, CONCLUSI ONS . .. e e e e e e 39
A INTRODUCTI ON . ..o e e e 39
B. DIFFI CULTY OF USE. e 39
1. Necessary Skills 39
2. Experience Level 39
3. Developnment Time.......... 40
C. APPROPRI ATENESS OF THIS ALGORITHM. 40
D. RECOMVENDATI ONS FOR FUTURE WORK oo 40
1. Devel op I npl enentati on of More Range Bins. ...40
2. Develop a Mrre User-Friendly Progranm ng
Environment. 41
3. Testing QGther Applications. 41
APPENDI X A . 43
A CHI P2 _SIM C. e 43

APPENDI X B . .. 51

A D-TYPE FLIP FLOP e 51
B. 5-BIT REASTER. 51
C. 8-BIT REASTER. 52
D. 13-BIT REG STER. 53
E. 17-BIT REG STER. 54
F. FULL ADDER. 55
G FULL ADDER WTH OVERFLOW SIGNAL 55
H. S5-BIT ADDER. 56
l. 16-BI T ADDER WTH OVERFLOW SIGNAL 56
J. LUT Lo 57
K. CONTROL LOGA C BLOCK e 58
L. SHEFTER 59
M ONE RANGE BIN. ... e 60
N. TWO RANGE BINS. 63
O FOUR RANGE BINS. 64
APPENDI X G 67
A MACRO VHDL FILE. 67
B. MAKEFI LE 84
C. MACRO INFO FILE s 85
D. MACRO BLACKBOX FILE. 86
E. C DRI VER PROGRAM. e 86
F. MAP CODE FILE. 92
G SAMPLE PHASE SAMPLE INPUT FILE.................... 93
H. SAMPLE RANGE BIN GAIN INPUT FILE.................. 93
l. SAMPLE SCREEN QUTPUT 94
J. SAMPLE OUTPUT DATA FILE. 94
K. SAMPLE RANCE BI N PHASE ROTATION INPUT FILE........ 95
APPENDI X D .o 97
A SRC-6E MACRO DATA e 97
B. SRC-6E C PROGRAM DATA e 119
C. WNDOWS C PROGRAM DATA . . . e 121
LI ST OF REFERENCES e 125
INITIAL DISTRIBUTION LIST e 127

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure
Fi gure

CoNoGTAWNE

10
11.

12.

LI ST OF FI GURES

Fal se Target Radar Inmaging AlgorithmUsage......... 2
Fal se Target Radar Inmage Chip Signal Flow.......... 3
I nternal Design of the Control Logic............... 5
Signal Flow for Four Cascaded Range Bins........... 6
SRC- 6E System Di agram (After Ref. 2.) 9
MAP Interface Block Diagram (FromRef. 2.) 10
16-bit Adder Versions 27
Conparison of Average Total Tinme.................. 33
Sem -Log Conparison of Average Total Tine......... 34
Conpari son of Average Time per Sample............ 35
Sem - Log Conparison of Average Tine per Sanple...36
Conpari son of Average Tinme per Sample............ 36

Xi

TH'S PAGE | NTENTI ONALLY LEFT BLANK

Tabl e 1.

Tabl e 2.

Fal se- Tar get

LI ST OF TABLES

Radar - | magi ng Program Exanple Using

Four Range Bins 6
Gain Shifter Operational Data (After Ref. 9.) 17

Xiii

TH'S PAGE | NTENTI ONALLY LEFT BLANK

ACKNOW.EDGEMENTS

| would Iike to thank Professor Russ Duren, formerly of the
Naval Postgraduate School, but now at Bayl or University,

for donating his personal tine and expertise to help ne de-
bug my code on several occasions. Wthout his assistance,
the focus of this thesis would have been how | coul d not
make the algorithmwork on this conputer as opposed to a
presentation of benchmarks and results.

| would also |like to acknowl edge David Caliga of SRC Com
puters, Inc. for providing personal assistance in hel ping
me to understand and use the SRC-6E conputer. His help
went wel |l beyond what | would normally expect fromthat re-
gquired by a technical support contract by personally debug-
gi ng ny code on several occasions.

XV

TH'S PAGE | NTENTI ONALLY LEFT BLANK

XVi

EXECUTI VE SUMVARY

The purpose of this research was to eval uate the per-
formance, correctness, and ease of use of the SRC- 6E recon-
figurable conputing systembuilt by SRC Conputers, Inc.,
and also to aid in establishing a broad base of know edge
on what types of applications are appropriate for inplenen-
tation on this type of machine. To this end, it was neces-
sary to first choose a readily available yet suitably com
pl ex algorithmfor inplenmentation on the SRC-6E. The al go-
rithm chosen was based on a custom chip design previously
devel oped by a faculty/student research team at the Naval
Post graduat e School which creates false target radar im
ages. A C language program witten by Professor Dougl as
Fouts, was al so available to use as a standard for conpar-

ing the accuracy of results throughout the research.

Reconfi gurabl e conmputing is defined as “the capability
of reprogramm ng hardware to execute logic that is designed
and optim zed for a specific user’s algorithnms” [1]. The
SRC- 6E reconfigurable conputer is a Linux-based system con-
sisting of two independent sides |abeled A and B which each
cont ai n not her boards hol di ng dual Intel P3 Xeon 1-GH proc-
essors, 1.5 gigabytes of nenory, and a SNAP interface card.
The SNAP card is a custominterface card which plugs into a
not her board DI MM nenory sl ot and provides connections to
the MAP board which is located in a third section of the
system A single MAP board consists of two independent
MAPs. MAP, a registered trademark of SRC Conputers, Inc.,
is the nane for the custom hardware. Each MAP consists of
three Xilinx Virtex-I1l-series XC2V6000 FPGAs and 24 nega-
bytes of nmenory. One of the FPGAs is reserved for “contro

XVi i

| ogic” while the other two, available for user prograns,
are called “user logic”. The nmenory is split into six
equal banks, |abeled A through F, of 4 negabytes each. The
user FPGAs are connected to a fixed 100- MHz cl ock.

Code witten in the hardware description | anguages
Verilog and/or VHDL can be ported for use on the SRC 6E
with only mnor changes. Several support files are re-
quired to nake the code target the user logic. These files
primarily describe the interfaces to the code. The al go-
rithmselected for the research described here was witten
in VHDL and converted for use on the SRC 6E

In order to evaluate the effectiveness of the SRC 6E
timng data was collected fromseveral sources. The first
data source was the executable created on the SRC 6E which
utilizes the reconfigurable user logic. The second data
source was a C program which perfornms the sanme functional -
ity as the VHDL code. This code was conpiled and executed
on a 3-GHz Pentium4 system utilizing 2 gigabytes of D W
menory and the Wndows XP Professional operating system
The third data source was the sanme C program runni ng on the
1- Gz Xeon processor on the Linux based SRC-6E (but not us-
ing the MAP). Several input data sets were created for
testing. Each individual input data value consists of a 5-
bit nunmber, witten as two hexadecinmal digits, which repre-
sent an intercepted radar signal. Data sets containing 32,
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16284, 32786,
65536, 131072, 262144, and 500000 data val ues were used.
Five timng runs were conducted for each data set on al

t hree data sources.

XViii

The tim ng data shows the SRC-6E MAP execution tinme is
extrenely fast, even for very large data set sizes. How
ever, the total execution time for the SRC-6E VHDL nacro
t akes considerably | onger than all other benchmark sources.
The extra tinme represents delays in the systemto prepare
and transfer the data in and out of the MAP which cause the
SRC- 6E execution tine to be longer for all input set sizes,

initially by an order of nagnitude.

As input set size is increased the timng results be-
gin to converge. The overhead in the SRC VHDL nacro
clearly domnates the results for smaller sanple set sizes.
However, for |arger sanple set sizes, the overhead tine is
anortized over the total tine to be nearly insignificant.
Presumably, the SRC nmacro total execution tinme would even-
tually neet the other benchmark platforns if the sanple set
size could be further increased. However, this is not pos-
sible with the current macro design due to the nenory de-
sign of the SRC-6E hardware

Programm ng the SRC-6E to use user-defined nmacros re-
qui res know edge of high-Ilevel progranm ng | anguages, hard-
war e description | anguages, hardware conponent design, and
synt hesi zability. Relatively few people possess all of
these skills to use the systemeffectively without first
receiving significant training. However, programm ng the
system usi ng only high-level |anguages of C or Fortran is
possi bl e which wi dens the potential user base to nany nore
people. More research needs to be performed to deternine

if either method produces nore effective solutions.

The SRC-6E has a relatively steep | earning curve.

There are a few exanples in the docunentation and a very

Xi X

smal | body of work in place using the system The errors
generated by the system during devel opnent are not intui-
tive and cannot be sol ved wi thout previous experience with
solving the sane errors. There are no devel opnment tools in
pl ace to assi st novice users in progranm ng the system
More research is required to see how nmuch experience on the
systemis required to prevent and or recogni ze these types

of errors quickly.

The devel opnent time to inplenment solutions on this
system appears to be high, primarily due to the steep
| earning curve and | ack of devel opnent tools. More re-
search nmust be perforned to quantify the devel opnent tine
and see how it inproves once a group of experienced repeat
users is grown. No research has yet been perfornmed with
| arge projects, enploying multiple programmers, to see if
the total project tinme can be reduced effectively.

Since it is pipelined and supports parallel process-
ing, the chosen inplenentation of the fal se-target radar-
i magi ng al gorithm appears to be one that woul d benefit from
a reconfigurable conputer. However, the current inplenen-
tation has been shown to | ack the necessary parallelismre-
quired to fully utilize the hardware and nake it effective.
Wt hout increases in the nmenory size allocated for the user
| ogic, the inplenentation on the SRC-6E is not an effective
solution in ternms of devel opnment time, processing tine, or

cost-ef fecti veness.

XX

. 1 NTRODUCTI ON

A PURPGCSE

The purpose of this research was to eval uate the per-
formance, correctness, and ease of use of the SRC- 6E recon-
figurabl e conputing systembuilt by SRC Conmputers, Inc.,
and also to aid in establishing a broad base of know edge
on what types of applications are appropriate for inplenen-
tation on this type of machine. To this end, it was neces-
sary to first choose a readily available yet suitably com
pl ex algorithmfor inplenmentation on the SRC-6E. The al go-
rithm chosen was based on a custom chip design previously
devel oped by a faculty/student research team at the Naval
Post graduat e School which creates false target radar im
ages. A C language program witten by Professor Dougl as
Fouts, was also available to use as a standard for conpar-
ing the accuracy of results throughout the research. This
chapter discusses the basics of the false radar inmaging al-
gorithm wuse of the chip design and C programin the re-
search and gives an overview of the najor steps required to
i npl enent and test the al gorithmusing the SRC 6E
B. FALSE TARGET RADAR | MAG NG ALGORI THM

The al gorithmworks by splitting a fal se target inmage
into several range bins, as shown in Figure 1, where a ship
is split into four range bins. Each range bin represents a
portion of the vessel based on the distance fromthe radar
source. Geater resolution can be achieved by having a
greater nunber of range bins for a given false target. It
can be observed fromthe geonetry that the radar-signa
travel distance is different for each range bin.

Figure 1. Fal se Target Radar | magi ng Al gorithm Usage

Based on know edge of a ship’s radar image, an opera-
tor can set phase rotation and gain constants for each
range bin. The algorithmbegins with the interception and
sanpling of an interrogating radar pulse. The sanple phase
is then rotated by adding a rotation constant to it. Next,
the sine and cosine are calculated. The gain is then ap-
plied to the results by multiplying by a gain value. The
results of each range bin are then summed up to produce a
radar reflection signal at a given time. Wth proper use,
the ship can be nmade to appear in a false position, be of a
different type of target, or to appear to be traveling with
ot her shi ps.

C. FALSE- TARGET RADAR- | MAG NG CHI P DESI GN

The fal se-target radar-imging chip consists of a 6-
stage pipeline which perforns all necessary functions to
create a false radar reflection for a single range bin.
Figure 2 shows the signal flow through the slightly sinpli-
fied version as was inplenmented during the research.

Phase Inc | Register 1
g Phase Sanpl e
5 5 i5
v
Regi ster 2 Regi ster 3
5 5
A 4 A 4
Adder 1
5
v
Regi ster 4
5
v
LUT
URB Gain SIN - COS
l i4 8 8
A 4 A 4
Regi ster 5 Regi ster 7 Regi ster 8
5 8 8
v v v
Register 6 | | Shifter 1 Shifter 2
>
pc L[
Gain 13 4 13
Previ ous —Y - Y Previ ous
Range Regi ster 9 |*5— Register 10 Range
Bin C Bin I
13 CLR13 13
! ! ! !
Register | 6 | Adder 2 Adder 3 | | Register
11 r_ ! 12
_ 17 17 17 17
v v
CLR17 Regi ster 13 Regi ster 14 CLR17
Next Rangeil? 17/l Next Range
Bin Q Bin |
URB -
psvin | Control ["BPsvout
—» lLogic [——
ODVi n CDVout
—» —
Fi gure 2. Fal se Target Radar I mage Chip Signal Flow

3

The basic steps of the algorithmare perforned as fol -
| ows:

1. The phase sanple enters into register 3.

2. The phase rotation value enters into register 1
is then loaded into register 2, and is then added to the

phase sanple at adder 1. The results are then | oaded into
regi ster 4.

3. The contents of register 4 enter the | ookup table
(LUT) and Sine and Cosine results are calculated. The re-
mai nder of the pipeline is split into two identical por-
tions for each data result. The follow ng steps outline
the path for the Sine result.

4. The gain value enters at register 5, 1is then
| oaded to register 6, and proceeds to shifter 1 where it
controls how the contents of register 7 are shifted before
they proceed to register 9. This acconplishes nodul o-2
mul ti plication.

5. The result froma preceding range bin enters at
register 11 and is added to the contents of register 9 in
adder 2 before proceeding to register 13.

6. The contents of register 13 are now avail able as
output Qif this is the last range bin in the series or are
sent to register 11 of a follow ng range bin.

The control |ogic block receives signals URB (use range
bin), PSVin (phase sanple valid input), and ODVi n (output
data valid input). These signals are used to create the
CLR13 (clear 13-bit register), CLR17 (clear 17-bit regis-
ter), PSVout (phase sanple valid output), and ODVout (out-
put data valid output).

The internal design of the control logic is shown in
Figure 3. The CLR13 and CLR17 signals are used to clear
the register contents at the appropriate tine in the pipe-

I ines when they do not contain valid data. This occurs
during pipeline startup and shutdown. The PSVout signal is

present to show the DRFM signal is valid. The ODVout sig-
4

nal is present to show that outputs Qand | contain valid
data. The URB signal is present to allow the operator to
di sable a range bin. Figure 4 shows the signal flow when

four range bins are connected together.

PSVout
PSVin ¢ : : L >
> o j_,— D 0o D 0k
+ P — CLR13
URB CLR Q CLR Q CLR Q _’_D
e\
CLK
>
T T
. ODVout
ODVi1in SET SET
N D 0 —m— D 0
— > P —
—_ — CLR17
CLR Q CLR Q _D
Fi gure 3. I nternal Design of the Control Logic

D. FALSE- TARGET RADAR- | MAG NG PROGRAM DESI GN

The fal se-target radar-imaging programwas witten in
the C language. It perforns the sanme arithnetic cal cul a-
tions as the false radar inmaging chip but uses nested |oop
iterative structures instead of pipelines. Wiile the chip
requires a separate pipeline for each range bin, the pro-
gram sinply adds additional length to the appropriate ar-
rays, trading off nenory utilization for conputationa
logic. Table 1 shows how the results of each of four range
bins with an input of N sanples are placed into the two di-
nmensi onal array created by the program Each row of the
table is then summed up to produce the fal se target radar

signal results.

O her Bi nDat aSI N

O her Bi nDat aCOS

PSVi n PSVout 3
Phase Sanpl e i Range DRFMB
CDVi n Bin 3 | covout3
13
PSVout 2 Sy Y
DRFMR2 Range |
Bin 2
ODVout 2 _
| 2
Fy Y PSVout 1
i Range | DRFML
Binl | oovoutl
PSVout Qy L 4 |41
) DRFM Range |,
) CDVout Bin 0
ey
Fi gure 4. Si gnal Flow for Four Cascaded Range Bins
Bin O Bin 1 Bin 2 Bin 3
Sample 1 0 0 0
Resul ts
Sample 2 Sanple 1 0 0
Resul ts Resul ts
Sanmple 3 Sampl e 2 Sanmple 1 0
Resul ts Resul ts Resul ts
Sanpl e 4 Sanple 3 Sanple 2 Sample 1
Resul ts Resul ts Resul ts Resul ts
Sanple N Sample N-1 | Sanple N2 | Sanple N3
Resul ts Resul ts Resul ts Resul ts
0 Sanmpl e N Sanmple N-1 | Sanple N2
Resul ts Resul ts Resul ts
0 0 Sanmpl e N Sample N1
Resul ts Resul ts
0 0 0 Sanple N
Resul ts
Tabl e 1. Fal se- Tar get Radar -1 magi ng Program Ex-

anpl e Usi ng Four
6

Range Bins

The program was used as both a trusted source for re-

sults to test the research against as well as used in the

timng conparisons discussed in Chapter V. The full code

for the program can be viewed in Appendi x A
E. REMAI NI NG CHAPTER QUTLI NE
The follow ng outlines the remaining chapters which

roughly follow the major steps that were taken throughout

t he research

Chapter |1 discusses the SRC 6E architecture,
progranmm ng environnment, and docunentati on.
Chapter 111l discusses programm ng the chip design
usi ng VHDL.

Chapter |V discusses porting the VHDL code to
SRC- 6E envi r onnent

Chapter V presents the data coll ection methods
and anal ysi s.

Chapter VI provides conclusions and future work
reconmmendati ons.

Appendi x A contains the nodified C programorigi-
nally witten by Professor Douglas Fouts which
was used a standard for output correctness and as
a source of timng data.

Appendi x B contains the final version of the VHDL
code that was tested before porting to the SRC
6E

Appendi x C contains the final version of the
files used on the SRC-6E, including sanple input
and out put.

Appendi x D contains all of the timng data col -
| ected during the research.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

I'1. SRC-6E ARCH TECTURE AND SOFTWARE ENVI RONMENT

A | NTRODUCTI ON

This chapter provides a brief overview of the hard-
war e, software, and docunentation, of the SRC 6E recon-
figurable conputing system Reconfigurable conputing is
defined as “the capability of reprogranm ng hardware to
execute logic that is designed and optim zed for a specific
user’s algorithms” [1].
B. SRC- 6E HARDWARE OVERVI EW

The SRC- 6E conputer consists of two independent Linux
conmputers (labeled A and B) and a MAP board, (see Figure
5).

Microprocessor
Side A

MAP —~—~
Chassis

AT

T Microprocessor
Side B

Fi gure 5. SRC- 6E System Di agram (After Ref. 2.)

MAP, a registered trademark of SRC Conputers, Inc., is the
nanme of the customreconfigurable hardware. Each independ-
ent Linux conputer contains a notherboard hol ding dual In-

9

tel P3 Xeon 1-GHz processors, 1.5 gigabytes of nenory, and
a SNAP interface card. The SNAP card is a custominterface
card which plugs into a notherboard DI MM nenory sl ot and
provi des connections to the MAP board which is located in
the MAP Chassis. A single MAP board consists of two inde-
pendent MAPs. A block diagramof a single MAP is shown in
Figure 6. A MAP consists of three Xilinx Virtex-l1-series
XC2V6000 FPGAs and 24 negabytes of nenory (| abel ed OBM on
Figure 6).

MAFP

64 Bit

Data OBM
Ports

THERIH = HETHEY

w
96 Bit <:: o
Chain In s B
Data 1w % MAP
U_Lagic
—-0d o Contral
%6 Bit CZJ\ FPEGA User One FPGA User Two N Processor
I =y DN
Chain Out i | R
Data
™

f ~7
EI:; System Common
Memory
Fi gure 6. MAP I nterface Bl ock Diagram (From Ref. 2.)

One of the FPGAs is reserved for “control logic” while the
ot her two, available for user prograns, are called “user
logic”. The OBMnenory is split into six equal banks, |a-
bel ed A through F, of 4 megabytes each. The user FPGAs are
connected to a fixed 100- MHz cl ock, which seens overly re-
strictive. According to Xilinx product specification
sheets, the Virtex-Il-series FPGAs can ran at clock speeds

as low as 1 Mz and upwards of 400 MHz [3]. Programmer
10

control of the clock speed on the SRC-6E woul d nake the
systemnore flexible. Each MAP also has a chain port which
can be used for direct I/Oto the user logic, but was not
used during this research.
C. SOFTWARE ENVI RONMENT

1. Operating System

The operating systemfor the SRC-6E is Red Hat Linux,
whi ch has been augnmented with customdrivers and libraries
to support the MAP and SNAP hardware. The built-in graphi-
cal text editor in Linux is called GEdit. Progranmers ex-
perienced with UNI X can use the standard line type text
editors such as VI if they choose. Both contain the mni-
mal functionality required of a text editor to wite the
required files for the SRC 6E

2. Progranmm ng Envi r onnent

The progranm ng environment for the SRC-6E is called
Carte. Carte allows a user to wite code in a high |eve
| anguage, either C or Fortran, that directly targets the
user programmable FPGAs in the MAP. In addition, users can
wite their own “macros” using the hardware definition |an-
guages Verilog and/or VHDL. At conpile time, all user code
and macros are linked together into a single executable
file. Carte includes standard conpilers for the Intel m -
croprocessors as well as custom MAP conpilers for both For-
tran and C. Synplify Pro software by Synplicity, Inc. is
used for FPGA place and routing. This program normally
runs under W ndows version but is executed in the Linux en-

vi ronment using a Wndows emul ator call ed W ne.

Since Carte relies on the built-in Linux editors, the
SRC- 6E programm ng environnment does not have any of the

nodern features a programmer expects fromeditors avail able

11

in products such as Mcrosoft’s Visual C++ or Borland s J-
Bui l der. Lack of syntax and error checking in the program
m ng environment is a serious drawback when using this sys-
tem Sone error nessagess are produced at conpile tineg,
but they are cryptic at best, especially for someone not
used to the Linux environnent. There are several file
types which nust interact during the conpile process, as
will be discussed in Chapter IV. The intricate details of
these files can be quite confusing and it is often diffi-
cult to identify which file contains the probl em based on
the error nessages given at conpile tinme. Rudinentary
checking of these files within a custom editor would
greatly inprove the entire programm ng process.
D. MAJOR DOCUMENTATI ON

The docunents di scussed here cone with the SRC 6E to
aid in its programm ng.

1. SRC- 6E C Programmi ng Environnment Gui de

Driver code nust be developed to create the interface
to the user logic. This docunent describes howto wite
this code using the C | anguage [4].

2. SRC- 6E Fortran Programm ng Environnent Cuide

Simlar to the C Programnm ng Environnent Cuide, this
docunent describes howto wite simlar code using the For-
tran | anguage [5].

3. SRC- 6E MAP Har dwar e Cui de

Thi s docunent contains hardware inplenmentation specif-
ics of the MAP which are well below the |evel required for
users to successfully programthe SRC- 6E [2].

4. SRC- 6E MAP Macro Devel opers Cui de

Thi s docunent di scusses general information on the use
of the Macro Data Sheet Library, including nam ng conven-
tions, interfaces, fanout and conbi natorial delays [6].

12

5. Macro Data Sheet Library

The library contains data sheets for all nacros devel -
oped by SRC for the SRC-6E. A list of all currently sup-
ported nmacros is available in a technical note, Ref. 7.
The macros can be used |ike regular function calls in the
chosen progranm ng environnment |anguage (C or Fortran).
The macros include all basic math and | ogic functions cur-
rently supported by the environment. There are also sev-
eral support macros which include, anong others, various
macros for conmbining and splitting data structures.

This chapter provided an overvi ew of the hardware,
sof tware and docunentation of the SRC-6E conputer. The
next chapter will discuss devel opnent and testing of the
VHDL code used in the research

13

TH'S PAGE | NTENTI ONALLY LEFT BLANK

14

I'11. DEVELOPMENT AND TESTI NG I N VHDL W TH ALDEC
ACTI VE- HDL 5. 2

A | NTRODUCTI ON

Thi s chapter describes the devel opnent of the fal se-
target radar-imaging nmacro in VHDL before it was ported to
t he SRC-6E environnment. This portion of the research was
performed before recei pt of the SRC-6E systemor any train-
ing on the systemwas received. As a result, the macro
that was originally devel oped contained the correct func-
tionality but was not optimzed for the SRC-6E environnent.
Devel opnent of the macro was perforned in a Wndows XP en-
vi ronment using Al dec Active-HDL 5.2 software.
B. FUNCTI ONAL BLOCKS

The Fal se- Target Radar-1magi ng chip was inpl enented
directly into VHDL by direct programm ng of the code. Each
conmponent of the design was created using separate func-
tional blocks of VHDL code. Several of the basic building
bl ocks of code were taken from Ref. 8 and nodified as nec-
essary. The code for this section can be viewed in Appen-
di x A

1. D- Type Flip Flops

The six pipeline stages required registers, which were
i npl enented as D-type Flip Flops. Single-bit registers
wer e designed that are | oaded on the rising clock edge and
have both enable and clear input signals. The 5-, 8-, 13-,
and 17-bit registers required for the designed were created
by instancing nultiple copies of the single-bit registers.

2. Adder s

A single-bit full adder was coded using the design of
Ref. 8. The 5- and 16-bit adders required for the design

were created by instancing nmultiple copies of the single-
15

bit adder. A sinple ripple carry design was used at this
point in the research. Chapter IV will discuss why this
was |ater nodified with carry | ook-ahead circuitry. For
the 16-bit adder, a special final single-bit stage was de-
vel oped to propagate an overflow signal if generated by
previ ous range bin stages.

3. Look-Up Tabl e (LUT)

The LUT was originally devel oped starting wth a de-
sign fromRef. 7, but was later heavily nodified. The LUT
takes a single 5-bit input and perforns sinultaneous | ook-
ups using data fromboth sine and cosine tables. The out-
put of the LUT is two 8-bit val ues, one each for sine and
cosine. The initial design had the correct functionality
but was later nodified after porting to the SRC-6E. The
required nodifications will be discussed in Chapter |V.

4. Control Logic Block (CLB)

The CLB was created by instancing several of the flip
flops with some basic logic functions to create the design
shown in Figure 3.

5. Gain Shifter

The shifter takes a 4-bit control input and shifts the
8 bits of input data into a 13-bit output. The shifter is
designed to provide a maxi numgain nultiplication of 1024.
However, applying this to an 8-bit input results in an 18-
bit output with nore dynam c range than is necessary [9].
Therefore, the least significant 5 bits are truncated to
create a 13-bit output. Table 2 shows how the control bits
affect the shift and the resulting resolution of the out-

put .

16

Control [Multiplication | Size of | Sin/Cosine Wave
Code Fact or Shi ft Resol uti on
0 1 0 3
1 2 1 4
2 4 2 5
3 8 3 6
4 8 3 6
5 16 4 7
6 32 5 8
7 64 6 8
8 16 4 7
9 32 5 8
10 64 6 8
11 128 7 8
12 128 7 8
13 256 8 8
14 512 9 8
15 1024 10 8
Tabl e 2. Gain Shifter Operational Data (After
Ref. 9.)

Because the input data could be negative, it was al so
necessary to preserve the sign bit by copying it as neces-
sary to the upper bits in the output. The original version
of this code used a case statenent and sone sinple math to
determ ne which bits were shifted where. The version ran
correctly in the Aldec sinulation software, but required

17

nodi ficati on when porting to the hardware, which will be
di scussed further in Chapter |V.

6. One Range Bin

A single range bin was created by instancing the above
parts and creating an appropriate interface. The code was
tested by conparing the output to the C programrun on the
same data set. After sone minor error correction to the
| ookup table entries, the code was incorrectly deened to be
correct. Additional testing later conducted with two range
bi ns yielded additional errors in the CLB that were not
found in the single range bin tests.

7. Two Range Bins

A systemwith two range bins was then created by in-
stancing two of the single range bins previously tested.
Tests run on the sane data sets with the C program yi el ded
errors. As previously nentioned, problens were eventually
di scovered with the timng within the CLB. These probl ens
were not identified while testing the single-range-bin
since the CLB primarily creates signals to handle the in-
teraction between nultiple range bins. After correction of
the errors, the output was deened to be correct.

8. Four Range Bins

Finally, a systemw th four range bins was created by
i nstancing four of the single range bins with an appropri -
ate interface. The signal flow of four range bins is shown
in Figure 4. The code worked properly the first tine. It
was this version of the code that was initially ported to
t he SRC- 6E.

Thi s chapter discussed VHDL code devel opnent. The
next chapter will discuss porting the code to the SRC 6E

18

| V. PORTING THE VHDL CODE TO THE SRC- 6E

A | NTRODUCTI ON

This chapter discusses the porting of the VHDL code to
the SRC-6E and the required support files. Also discussed
are changes that were required to the original code to make
it conpatible with the SRC-6E.
B. THE SRC- 6E FI LE TYPES

The process of witing code to target the user |ogic
requires several file types. To inport a user macro from
either VHDL or Verilog, five files nust be created: .info,
.box, .nt, .c, and the makefile. Using only the |ast
three, one can wite code that targets the user logic wth-
out using a user defined nmacro. Exanples of these file
types can be viewed in Appendi x C, which contains the final
versions of all the files used.

1. .info

This file type is required whenever a user macro is

used. It contains the follow ng information:
. Macro nanme
. Macro type — stateful, external, and pipelined
. Latency — a nunber stating how many cl ock cycles
before valid output is generated by the nmacro.
. Li st of inputs and outputs
The file type “.info” is a nam ng convention and is not re-

quired. Any filenane can be used as long as it matches
that listed in the makefile.

2. . box

This is another file type that is required only when
using a user-defined macro. It is a Verilog style descrip-
tion of the input and output variables of the macro. The

Verilog description is necessary for both VHDL and Veril og
19

macros. As with the .info type, the .box nane is only by
conventi on.

3. . ncT

This file type is C code witten to target the user
logic. Al code inthis file will be inplenented in hard-
ware along with the user macro. Using this file type, it
is possible to wite code for the hardware using only the
hi gh-1 evel |anguage C w thout using any user-defined nmacros
defined with a hardware description | anguage.

4. . C

This file type is regular C code which provides the
interface between the operating system and the hardware
code defined in the .nt file. Code inplenmented in this
file is executed on the Xeon processors.

5. makefile

This file is used by the conmand “nmake” when all the
files are conpiled and linked. It contains all of the file
nanmes and paths used, as well as the desired final executa-
ble nanme. Conpiler flags and options can also be stated in
this file.

6. .vhd

This file type is for VHDL macro files. In general,
it is safest to nerge nultiple files into one. However, it
is possible to build with separate files as long as they
are listed in the proper order in the nmakefile. The com
pil er appears to be single pass so the files nmust be in the
order they are used, with the |lowest order file listed
first.

7. O her Types

Two other file types can be used by users programm ng
the user logic: .f, which is a Fortran file, and .v, which

20

is a Verilog file. These file types were not used during
this research
C. CODE DEVELOPMENT

Porting of the macro code began with creation of the
required support files previously nmentioned. Although the
files are relatively small, creating themwas non-trivial
as there were no previous exanples using VHDL macros. The
process was a painful series of trial and error, particu-
larly wiwth the required contents of the .info and . box
files. The code went through ten major revisions, with
three maj or versions, over a period of about six nonths.

1. Version 1.0

The singl e-range-bin VHDL code was inported to the
SRC- 6E and all code nodul es were nerged into a single .vhd
file. The required support files were first generated us-
ing sonme unrel ated exanples in the C Programm ng Gui de and
a |l ot of guessing. The SRC data packing macros called com
bine and split were used to pack and unpack the data in the
.nmc file into two nmenory banks for input and one for out-
put. Mich trial and error was attenpted on this version,
but it would never nmake to create an executabl e.

2. Version 1.1

After discussion with SRC technical support, sone new
changes were tested. The .info and .box file format ques-
tions were nostly resolved in this version. The order of
declarations within the .vhd file was changed to nmake the
mai n macro appear as the top level to the conpiler. The
gain shifter code was nodified to nake it synthesi zabl e.
This version conpiled to executabl e but caused unexpl ai n-

abl e segnentation faults when run

21

3. Version 1.2

In order to isolate the faults in this version, enpty
macros were made in VHDL consisting of only the interface
information. After determning the problemwas in the sup-
port files, the original VHDL macro was restored. Problens
were isolated with m suse of the SRC packi ng macros and
vari ous other syntax errors. After much further work and
testing, this version created a working executabl e which
produced the proper output expected for a single range bin
on a 32 sanple size input.

4. Version 2.0

Encouraged by the success, a new version was created
which attenpted to inplenent four range bins. The SRC
packi ng macros were not used in this inplenentation because
t hey coul d not conbine vectors shorter than 8 bits w thout
wasting the remai ning space. The VHDL nacro uses 1-, 4-,
5-, and 17-bit signals. These odd sizes could not be effi-
ciently conbined with the pre-built nmacros and all packing
of data was inplenmented in the C program conbining all in-
put into two 64-bit words using a series of shifting and
logic wwth masks. The VHDL macro interface was al so nodi -
fied to support the changes. This version created a work-
i ng execut abl e; however, sone of the output data was incor-
rect.

5. Version 2.1

In order to help identify where the problens were, the
output format was nodified in the .c programto display the
outputs of all four range bins. After several changes, the
code began hangi ng when executed during the call to the MAP
function. On recomendation of the SRC technicians, the
met hod in which the array sizes were cal cul ated was nodi -

fied to ensure the arrays were properly padded and al i gned
22

on 32-bit nenory boundaries as required. The changes re-
sol ved the hangi ng probl em but the output data was still
i ncorrect.

6. Version 2.2

At this point, the researchers were stunped and
searching for any possible reasons why the output data was
wong. The majority of the output was correct. The code
generated several correct values followed by a single in-
correct value. The renuaining output was correct up until a
certain point before the end of the data where it all went
bad. Exploring all possibilities, it was discovered that
the macro was failing the timng requirenments to run within
the 100-WVHz clock. No errors or warnings were produced by
the SRC environnment to state this. The timng results are
created along with many other files during the nmake proc-
ess. For exanple, running the make process on Version 3.0
of this research generates 54 files split over 3 directo-
ries. Locating useful debugging information within these
many files can be a chore. Howthe timng failures were
resolved will be discussed |ater, but they ended up not be-
ing the problem

7. Version 2.3

In order to troubl eshoot the corrupt data problem the
16-bit adder code was renoved, which allowed the direct
out put of each of the four range bins to appear in the out-
put. The data generated by each of the range bins showed
the sanme general fornmat of being nostly correct but all go-
ing bad after a certain point. Mich attention was turned
to the control logic at this point to see if it was the
culprit but no errors could be found. To help isolate the
problem the current version of the VHDL code was exported

back to the Wndows environnent and it produced the correct
23

output. At this point, the SRC-6E was incorrectly sus-
pected to have either a software or hardware bug, possibly
in the nenory transfers. The software environnment has a
useful debuggi ng node cal | ed MAPTRACE whi ch can be used to
view the data before and after it is sent to the MAP. (Ob-
servations of the file generated by MAPTRACE showed t hat

the data was being passed to and received by the MAP cor -

rectly.
8. Version 2.4
This version still had the 16-bit adder renoved. M -

nor changes to the LUT and gain shifter were inplenented in
this version to ensure that they were fully synthesizable
but they did not affect the output. Troubl eshooting with
this version did not solve the problem but hel ped narrow
the focus to the interface. Upon cl ose exam nation of the
interfaces it was noted that there were differences between
t he Wndows version and the SRC version as to the way the
data was packed in the SRC version. After exporting the
packed data to the Wndows version, the code produced the
sanme identical faulty output as the SRC version. Since the
two versions both produced the sanme identical output, it
was determ ned that the problemhad to be with the inter-
face and i nput data.

9. Version 2.5

After closer inspection of the interface and the
nmet hod used to pass in data, it was observed that the gain
and phase shift signals were not being applied properly.
This was an operational problemas the nmacro code was cor-
rect. Modifying how the signals were applied fixed the
problemw th the faulty outputs. At this point, the code
was producing correct output and data collection was

started on various sized data sets. VWhile collecting the
24

data, it was noted that a segnentation fault would occur
above certain array sizes.

10. Version 3.0

After discussion with SRC technical support, the code
was nodified to use a dynam c array allocation nethod which
wi |l be discussed later. The nmenory usage changes cor -
rected the problem Al extra unnecessary output was al so
renoved in this version. This final version was used to
collect the data and is shown in Appendi x C.
D. SYNTHESI ZABLI TY

Synt hesi zability is a style of hardware description
| anguage programm ng which allows the avail abl e | ayout
tools to properly convert the code for hardware inplenenta-
tion on an FPGA. During the design of the code, the Al dec
software was only used to sinmulate the VHDL code. There-
fore, it only tested the code for functionality and did not
consider if the code could actually be inplenmented in hard-
ware. Two of the original code blocks, the gain shifter
and LUT, required nodification once ported to the SRC-6E so
the | ayout tool could define themin hardware. The root
cause of this was inexperience with both the VHDL | anguage
and the concept of synthesizability.

1. @Gin Shifter Changes

The gain shifter went through two changes. Initially,
t he code was defined such that some of the variable bit
wi dths were defined at run-time. This worked fine during
enmul ation but could not be inplenented in hardware. To
make it work the code was witten with a “case” statenent
that outlined specifically every possibility at runtine.
| mpl ementing this in hardware requires redundant |ogic and
decoders to choose which portions to use during run tine.

Later, the code was stream ined again to renove an unneces-
25

sary function call which provided sone savings in the fina
hardware definition. The function call, which converted
data types frombit_vector to integer, also had an unneces-
sary variable length defined at run-tine. Wen renoving
the variability, it was determ ned that the entire function
was not required and the “case” statenent was nodified to
incorporate the function’s results directly.

2. LUT Changes

The sanme function call that was made in the Gain
Shifter was also used in the LUT. Although this code
wor ked properly, even with the variable length at runtine,
the function call was unnecessary and simlar methods were
used to renmove it fromthe code entirely. The renoval re-
sulted in a small space savings on the FPGA
E. TI M NG FAI LURES

Wi | e debuggi ng the code to determ ne the cause of
sone faulty output on the SRC-6E, it was noted that the
macro was failing timng requirenments for inplenentation
with the 100- MHz clock. The worst path through the | ogic
was reported to be in the portion of the pipeline that con-
tained the 16-bit adder and that it exceeded the required
time by 4.310 ns. The cause of the poor timng was that
the 16-bit adder was initially inplemented with a sinple
design using ripple carry propagation, shown in Figure 7a.

26

a. Oiginal Ripple Carry Version Carry

BRI e

b. Single 8-bit CLAH

Carry

|+H+H+H+H+H+H+H+J|+H+H+H+H+H+H+H+#

c. Triple 4-bit CLAH

Carry
I'n

R

CLAH4

BE IR KR K

d. Final |nplenmented Version

L
(M M O A R

Figure 7. 16-bit Adder Versions

Several alternative designs were tested using carry
| ook-ahead (CLAH) circuits to bring the delay tinme within
that required for the 100-MHz clock. O note, these nodi-
fications did not affect the output in any way and were not
the solution to the problem being investigated at the tine.
The probl em bei ng i nvestigated invol ved passing in inproper
input. Despite the fact that the timng was failing, the
circuits were still working properly, denonstrating that
t here was possibly sonme error within the timng cal cul a-
tions or nore likely that there was additional padding en-
gineered within the design.

1. Single 8-bit CLAH

A single 8-bit CLAH circuit was designed and placed in
the center of the carry chain, which effectively splits the

chain in half as shown in Figure 7b. This inproved the

27

time by alnbost 3 ns, but the circuit still failed timng by
1. 615 ns.

2. Three 4-bit CLAH

A 4-bit CLAH circuit was designed and placed at three
points in the carry chain. The circuit chai ned groups of
four carries to each other, as shown in Figure 7c. This
design slightly inproved the timng but was still inade-
quat e.

3. Two 4-bit and one 8-bit CLAH

Finally, conbinations of 4-bit and 8-bit CLAH circuits
were used, which effectively split the 16 carries into four
pi eces, as shown in Figure 7d. Initially, this design only
i mproved the timng slightly which remai ned about 1.2 ns
over what was required. Coincidentally, at the tinme of
this testing, an upgrade to the Carte software was re-
| eased, version 1.5. Remaking the same design after the
upgrade created a result that was 0.401 ns under tine. The
reason why the new version of the software caused the tim
ing inprovenent remains a mystery. No further nodifica-
tions were made after this point.
F. MEMORY ALLOCATI ON CHANGES

Dat a passed into the MAP nust be properly declared and
aligned. There are two nethods to acconplish this. The
first method attenpted used the SRC function “addr32.”
This method uses fixed sized arrays declared at conpile
time. The addr32 nmethod worked fine up to fixed size ar-
rays of 166,581 but caused segnentation faults when exceed-
ing this value. A trial and error approach was used to de-
term ne the exact value at which the segnentation faults
began. The nunber 166,582 has no apparent meani ng when re-
lated to array sizes and is a very unusual nunber to fail

on. Communi cation with SRC Conputers, Inc. could not re-
28

solve why this occurs. However, using the second avail able
nmethod with the “cache_alligned_allocate” function all owed
the array sizes to be declared correctly. This nethod uses
run-time allocation to declare the proper array sizes and
was tested successfully up to array sizes of 500,000 64-bit
el enents. Based on 4 nmegabytes of nenory per bank, the
theoretical Iimt is 524,288 64-bit values, but this upper

limt was not tested.

Thi s chapter discussed the necessary changes required
to port the VHDL code to the SRC-6E environnent. The next
chapter will discuss benchmarking the SRC 6E, including
data coll ection and anal ysi s.

29

TH'S PAGE | NTENTI ONALLY LEFT BLANK

30

V. DATA COLLECTI ON AND TI M NG ANALYSI S

A | NTRODUCTI ON
Thi s chapter discusses the benchmarks and net hods used

for collection of data and its analysis during the re-

sear ch.
B. BENCHVARK TEST PLATFORMS
1. C Program Execut ed on a W ndows-based Machi ne

The C program shown in Appendi x A was conpi |l ed and
executed on a 3-GHz Pentium 4 processor systemwth 2 giga-
byt es of RAM runni ng the W ndows XP Professional operating
system The primary reason for this benchmark was to draw
a conparison for cost-effectiveness between the high-cost
speci al purpose SRC-6E system and a nodern, off-the-shelf,
general purpose conputer.

2. C Program Execut ed on the SRC 6E

The sanme C program was conpiled and run directly on
t he SRC-6E wi t hout using any of the custom hardware.
Therefore, the data collected is based on the Linux operat-
ing systemrunning on a 1-GHz Xeon 3 processor with 1.5
gi gabytes of RAM Al though the system contai ns dual proc-
essors, only one thread is created while running the code
and therefore it is believed that only one processor is
utilized during the test. The primary reason for this
benchmark was to test if the algorithmitself is suitable
for inplenmentation on the user-1ogic.

3. VHDL Code on the SRC-6E MAP

The VHDL user macro and support files (shown in Appen-
dix C) were built and executed on the SRC-6E MAP. Two tim
ing data results were collected fromeach of the runs, the

total run tinme for the entire execution and the tine of

31

execution on the MAP only. The two tinming data results
conpare overhead tine to actual execution on the MAP
C. TI M NG DATA COLLECTI ON METHOD

The input data sets were conposed to represent a
stream of intercepted radar sanples. Each data item con-
sists of two hexadecimal characters representing a five-bit
intercepted radar sanple. The 32-sanpl e-size data set is
shown in Appendix C, which represents the deci mal nunbers O
to 31 in order. All other-sized sanple sets were created
by duplicating and repeating the sane 32 sanples in order.
By doubling each previous sanple set size the follow ng set
Ssizes were created: 32, 64, 128, 256, 512, 1,024, 2,048,
4,096, 8,192, 16,284, 32,786, 65,536, 131,072, and 262, 144.
The final set size of 500,000 was chosen as a conveni ent,
| arge value that was close to the upper array size restric-
tion allowed by the four megabytes of nmenory per bank on
t he SRC- 6E.

Data fromall test platforns were collected in order
of increasing input set size. Al raw data used in the
timng anal ysis can be observed in Appendix D. The timng
data was coll ected by running five consecutive runs of each
i nput data set on each of the three benchmark platforns.
The data for the Wndows XP systemwere collected after a
fresh reboot with all unnecessary progranms closed. It
shoul d be noted that observation of the system usage during
execution of the code showed that the processor and nenory
were not fully utilized. The reasons why the processor did
not appear to be fully used and the nethods W ndows uses to
measur e performance are unknown. The SRC-6E system data
were collected by running the executables on side A when no
ot her users were using the system

32

D. TI M NG DATA ANALYSI S

1. Methods

The timng data are displayed in two types of graphs.
The first is the average total tinme each test platform
takes for each data set. The average is taken of the five
data points for each input set size. The second is the av-
erage tine per sanple for each input set. First, the aver-
age is taken over the five data points and then it is di-
vided by the input set size. Al graphs are connected with
straight Iine approximtions between data points.

2. Results

Figure 8 shows the average total tinme vs. input set
size for each of the four timng result sets.

Average Total Time

Time (Seconds)
N
()]

0.5
R
R S S S A SR S S AR, SRt S S VIR SRR
L IR R S LA S SR S L S . B LN S
A A 3 fﬁ’(i\ oDQQQ

Input Set Size

—&— SRC Macro MAP Call —#— SRC Macro Total
Windows XP C Program SRC C Program

Fi gure 8. Conpari son of Average Total Tine

Figure 9 shows the sanme data displayed on a seni-log scale
for better clarity in the |ower sanple set size region.

Al'l four curves are fairly constant up to the 16,284 sanple
33

size. This result shows that, for small data set sizes,
the overhead tines inherent in the systens are much greater
than the calculation times. W consider overhead to be al
the data file read/wite operations and nmenory accesses re-
quired to prepare the data for cal culations. The SRC Macro
MAP Call curve clearly shows the calculation tinme is insig-

ni ficant conpared to the total processing tine.

Average Total Time (Log Scale)

10

R [S G D G G NS S S, o

Time (Seconds)

0.01

Input Set Size

—e— SRC Macro MAP Call —#— SRC Macro Total
Windows XP C Program SRC C Program

Fi gure 9. Sem - Log Conparison of Average Total Tine

The SRC Macro MAP Call curve al so shows the MAP execu-
tion time is extrenely fast, even for very |arge data set
sizes. However, the SRC Macro Total curve shows the tota
execution tinme for the VHDL macro takes consi derably
| onger. The extra time represents delays in the systemto
prepare and transfer the data in and out of the MAP which
cause the SRC execution tinme to be longer for all input set

sizes, initially by an order of nagnitude.

34

As the input set size is increased, we see the curves begin
to converge. Figure 10 shows a conparison of the average

time per sanple. Figure 11 shows the same data on a semi -
| og scal e.

Average Time per Sample
0.06
0.05 A
0
S 0.04
o
9 0.03
& 0
[
£ 0.02 1
[
0.01 A
0.00 6\\' e N A e T
YV 3 > © U ™ > © 4% 3 © © vV 3 Q
oL < RN LI\ PP S R X SH - ML M LEIN g
VST T T @ g @ O &
Input Set Size
—&— SRC Macro MAP Call —#— SRC Macro Total
Windows XP C Program SRC C Program
Fi gure 10. Conpari son of Average Tinme per Sanple

The overhead in the SRC Macro clearly dom nates the graphs
for smaller sanple set sizes. However, for |arger sanple
set sizes, the overhead tine is anortized over the total
time to be nearly insignificant. Figure 12 shows only the
upper sanple set size data to magnify the differences. The
SRC Macro Total tine is approaching the other curves and
presumably woul d eventually neet themif the sanple set
size could be further increased. However, this is not pos-
sible with the current nmacro design due to the nenory de-
sign of the SRC-6E hardware

35

Average Time per Sample (Log Scale)

1.0E+00
1.0E-01
— 1.0E-02
(2]
2
9 1.0E-03
Q
Q
o 1.0E-04
E
F 1.0E-05
1.0E-06
1.0E-07
Input Set Size
—&— SRC Macro MAP Call —#— SRC Macro Total
Windows XP C Program —>¢—SRC C Program
Figure 11. Sem - Log Conparison of Average Tinme per
Sanpl e
Average Time per Sample (Large Sample Sizes Only)
0.00012
0.00010
% 0.00008
[
o
o
3 0.00006
[
E 0.00004
[
0.00002
0.00000
16284 32786 65536 131072 262144 500000
Number of Samples
—&— SRC Macro MAP Call —#—SRC Macro Total
Windows XP C Program —>¢—SRC C Program
Figure 12. Conpari son of Average Tine per Sanple

36

3. Concl usi ons

The design of the VHDL nmacro running on the SRC 6E
suffers from excessive overhead which makes it less effi-
cient than the C program which perfornms the sane cal cul a-
tions. Due to the nenory size available to the user logic
on the SRC-6E, the sanple set size cannot be increased
| arge enough to nake the VHDL macro run efficiently. The
calculation tine on the SRC user logic is extrenely fast
but this is irrelevant if a nethod cannot be devel oped to
reduce the overhead.

The C programrunning on Wndows is faster at | ow sam
pl e set sizes due to the raw processing power of the faster
cl ocked Pentium 4. However, the slower Linux based SRC
system catches up for |arger sanple set sizes and even ap-
pears to surpass the Pentium at the 500,000 sanple set
size. It appears that the Linux operating systemis nore
efficient than Wndows for this particular algorithmon the
SRC- 6E. However, the much greater cost of the SRC- 6E does

not make it a cost-effective solution for this algorithm

Thi s chapter discussed benchmarki ng the SRC 6E, in-
cluding collection of data and anal ysis, and drew concl u-
sions on the results. The next chapter draws concl usions
on the SRC-6E, including difficulty of use and appropri at e-
ness for the chosen algorithm Reconmmendations for future

work are al so presented.

37

TH'S PAGE | NTENTI ONALLY LEFT BLANK

38

VI . CONCLUSI ONS

A | NTRODUCTI ON

This chapter draws conclusions on the difficulty of
use of the SRC-6E, appropriateness of the chosen al gorithm
for application on the SRC-6E, and gives recommendati ons
for future work.
B. DI FFI CULTY OF USE

1. Necessary Skills

Programm ng the SRC-6E to use user-defined macros re-
gui res knowl edge of high-I|evel programm ng | anguages, hard-
war e description | anguages, hardware conponent design, and
synt hesi zability. Relatively few people possess all of
these skills to use the systemeffectively without first
receiving significant training. However, programm ng the
system using only high-level |anguages of C or Fortran is
possi bl e which wi dens the potential user base to nmany nore
people. Mich nore research needs to be perforned to deter-
mne if either method produces nore effective solutions.

2. Experi ence Level

The SRC-6E has a relatively steep | earning curve.
There are a few exanples in the docunentation and a very
smal | body of work in place using the system The errors
generated by the system during devel opnent are not intui-
tive and cannot be sol ved without previous experience with
solving the sane errors. The SRC support staff are very
hel pful in solving specific code problens but are not
forthcom ng in the reasons or nethods used to resolve them
There are no devel opnent tools in place to assist novice
users in programm ng the system ©Mre research is required
to see how nmuch experience on the systemis required to

prevent and or recogni ze these types of errors quickly.
39

3. Devel opnent Ti e

The devel opnent time to inplement solutions on this
system appears to be high, primarily due to the steep
| earning curve and | ack of devel opnent tools. This re-
search represents approximately one year of part-tinme work
by a single, previously inexperienced person, of which
about half the time was working with the SRC-6E. It should
be noted that many del ays were present in the research that
woul d not occur on a second attenpt at testing the system
for exanple, scheduling user training and initial delivery
of the system More research nust be perfornmed to further
quantify the devel opnent tinme and see how it inproves once
a group of experienced repeat users is growmn. No research
has yet been perfornmed with |large projects, enploying mul-
tiple programmers, to see if the total project tinme can be
reduced effectively.
C. APPROPRI ATENESS OF THI S ALGORI THMU

The chosen inplenmentation of the fal se target radar
i mgi ng al gorithm appears to be one that would benefit from
a reconfigurable conputer because it is pipelined and sup-
ports parallel processing. However, inplenentation of the
design with four or | ess range bins has been shown to | ack
the necessary parallelismrequired to fully utilize the
hardware and nmake it effective. Wthout increases in the
menory size allocated for the user logic, inplenentation of
four range bins on the SRC-6E is not an effective solution
in ternms of devel opnent tinme, processing tine, or cost-
ef fectiveness.
D. RECOVMENDATI ONS FOR FUTURE WORK

1. Devel op I npl enentati on of More Range Bins.

The algorithmis not parallel enough with four or |ess

range bins to make inplenenting it on the SRC- 6E architec-
40

ture an effective solution. Expanding the interface to in-
stantiate and deliver data to nore range bins at once nmay
show a nore drastic increase in perfornmance versus ot her
conmput i ng net hods. Rough estimtes of FPGA usage show t hat
16 range bins should fit in the user logic area. However,
rebuilding the interface to support this could be a chal -
lenge with the limted bandwi dth provided by six 64-bit ar-
rays.

2. Devel op a Mdre User-Friendly Progranm ng Environ-
ment .

As previously discussed, the SRC- 6E | acks a custom
code editing environment with nodern features such as rea
time syntax checking. Automated generation of sonme of the
support files could also be inplenented. Project w zards
could be created that ask a few questions and then create
t he skel etons of the support files for the project.

Changes to one file that affect another could be autonmati -
cally corrected or at a m ni mum generat e warni ngs.

3. Testing Gt her Applications.

The know edge base of what types of applications do or
do not work efficiently on this systemis very small. Many
nore algorithnms need to be tested on the system Program
mng the sanme algorithmw th both the high |evel |anguage
met hod and the user macro nethod woul d al so provide infor-
mati on on which produces better results for different types
of algorithnms. Cost and tim ng conparison to nodern, read-

ily avail able conputers should continue to be made.

41

TH'S PAGE | NTENTI ONALLY LEFT BLANK

42

APPENDI X A

Thi s appendi x contains the C code witten by Professor
Dougl as Fouts that was used as a standard for output cor-
rectness and as a source of timng data. Slight nodifica-
tions were made to provide for timng result output and in-
creased sanpl e sizes. The version presented was used on
both the SRC-6E and the Wndows XP platforns for timng
anal ysis with no nodifications.

A CH P2 SIMC

/* Simulate the DI S-512 chip. */

/* Conpile Command */

/[* cc Chip2_Simc -Im*/

/* Range bin phase increnent data nust be in the file phzinc.txt. */
/* Range bin anplitude scaling data nmust be in the file anpscal.txt. */
/* Pul se phase sanples must be in the file phzsamp.txt. */

/* Qutput results are put into the file landQout.txt */

/* dobal Included Files */

#i ncl ude <stdi o. h>

#i ncl ude <nath. h>

#i nclude <tine. h>

/* d obal Defines */

#defi ne rangebins 4 /* Nunber of range bins. */
#def i ne phzsanps 500000 /* Maxi mum nunber of phase sanples. */
/* dobal Data Structures */
i nt phzi ncdat [rangebi ns], /* Stores phase increnents for each range
bin. */

anpscal dat [rangebi ns], /* Stores anplitude scaling factors for
each range bin. */

| partres[phzsanps + rangebi ns][rangebins], /* Stores partia
results for each phase sanple */

Qoartres[phzsanps + rangebi ns][rangebins], /* in each
range bin. */

sintab[32], costab[32], /* Sin and Cos | ookup tables. */

nunof sanps; /* Used to count nunber of sanples read in from

file phzsanmp.txt. */

43

/* Read in phase increnent values for each range bin, */

/* and store the results in the array phzincdat. */
rdphzi nc()
{

/* Local Variables */

FILE *fil epnt;

int rbecnt;

/* Open the input file phzinc.txt. */

if ((filepnt = fopen("phzinc.txt", "r")) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File phzinc.txt not
found.\n\n");

/* For each range bin. */
for (rbent = 0; rbcnt < rangebins; rbcnt ++)

{

fscanf (filepnt, "%", &phzincdat[rbcnt]); /* Read in phase
i ncrenent val ue. */

} /* end of for |oop */
/* Close input file. */
fclose(filepnt);

} /* End of function rdphzinc. */

/* Read in anplitude scaling values for each range bin, */
/* and store result in array anpscal data. */
rdanpscal ()
{

/* Local Variables */

FILE *fil epnt;

int rbcnt, inptanpdat, tstanpdat;

/* Open the input file anpscal.txt. */
if ((filepnt = fopen("anpscal .txt", "r")) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File anpscal.txt not
found.\n\n");

/* Read in anplitude scaling values for each range bin. */
for (rbent = 0; rbcnt < rangebins; rbcnt ++)
{

fscanf(filepnt, "9%", & nptanpdat);

anpscal dat[rbcnt] = 0x00000001 & i npt anpdat ;

44

/*

in

}

t st anpdat

if (tstanmpdat == 1)

anpscal dat[rbcnt] =

anpscal dat [rbcnt]

= 0x00000001 & (i nptanpdat >> 1);

anpscal dat[rbcnt] + 2;
t stanpdat = 0x00000001 & (i nptanpdat >> 2);
if (tstanmpdat == 1)

anpscal dat[rbcnt] + 3;

t stanpdat = 0x00000001 & (i nptanpdat >> 3);
if (tstanmpdat == 1)

anpscal dat [rbcnt]

/* Close input file. */

fclose(filepnt);

Initialize the gl oba

tarrays()

/*

ampscal dat[rbcnt] + 4;

/* End of function rdanmpscal. */

Local

Vari abl es */

i nt sampnum rbnum

/* Initialize the partial

for

/*
si
Si
Si

Si

S

[
si
Si

Si

for (rbnum = 0;

{

(sampnum = 0;

storage arrays. */

result array. */
sanpnum < phzsanps; sanpnumt+)

rbnum < rangebi ns; rbnumt+)

| partres[sanpnum + rbnunm [rbnum = O;

Qoartres[sampnum + rbnuni[rbnunj = O;

}

Initialize the sin table.

nt ab[0]
nt ab[1]
nt ab[2]
nt ab[3]
nt ab[4]
nt ab[5]
nt ab[6]
nt ab[7]
nt ab[8]

0x00000000;
0x00000019;
0x00000031;
0x00000047;
0x0000005A;
0x0000006A,
0x00000075;
0x0000007D
0x0000007F

*/

45

sintab[9] = 0x0000007D;
si ntab[10] = 0x00000075;
ntab[11] = 0x0000006A;
ntab[12] = 0x0000005A;
si ntab[13] = 0x00000047;
si ntab[14] = 0x00000031;
sintab[15] = 0x00000019;
ntab[16] = 0x00000000;
ntab[17] = OxFFFFFFE7;
si ntab[18] = OxFFFFFFCF
sintab[19] = OxFFFFFFB9;
si ntab[20] = OXFFFFFFAG;
ntab[21] = OXFFFFFF96;
ntab[22] = OxFFFFFF8B
si ntab[23] = OxFFFFFF83;
si ntab[24] = OxFFFFFF81;
si ntab[25] = OXFFFFFF83;
ntab[26] = OxFFFFFF8B
ntab[27] = OxFFFFFF96;
si ntab[28] = OXFFFFFFAG;
si ntab[29] = OxFFFFFFB9;
si ntab[30] = OxFFFFFFCF
si ntab[31] = OxFFFFFFE7;
/* Initialize the cos table. */
costab[0] = 0x0000007F;
costab[1] = 0x0000007D
costab[2] = 0x00000075;
costab[3] = 0x0000006A;
costab[4] = 0x0000005A;
costab[5] = 0x00000047;
costab[6] = 0x00000031;
costab[7] = 0x00000019;
costab[8] = 0x00000000;
costab[9] = OXFFFFFFET7;

S

S

S

S

S

S

S

S

costab[10] = OxFFFFFFCF
costab[11] = OxFFFFFFB9;
costab[12] = OxFFFFFFAG;

cost ab[13]
cost ab[14]
cost ab[15]
cost ab[16]
cost ab[17]
cost ab[18]
cost ab[19]
cost ab[20]
cost ab[21]
cost ab[22]
cost ab[23]
cost ab[24]
cost ab[25]
cost ab[26]
cost ab[27]
cost ab[28]
cost ab[29]
cost ab[30]
cost ab[31]

OXFFFFFF96;
OXFFFFFF8B;
OXFFFFFF83;
OXFFFFFF81;
OXFFFFFF83;
OXFFFFFF8B;
OXFFFFFF96;
OXFFFFFFAG;
OXFFFFFFBO;
OXFFFFFFCF
OXFFFFFFET;
0x00000000;
0x00000019;
0x00000031;
0x00000047;
0x0000005A;
0X0000006A;
0x00000075;
0x0000007D

/* End of function initarrays. */

/* Read in pul se phase sanples and cal cul ate partial */

/* results for each range bin and store result in */
/* the arrays Ipartres and Qartres. */
rdphzsanp()
{

/* Local Variables */

FILE *fil epnt;

i nt phzdat,

phzaddout ,

| LUTQut, Q.UTCQut, | GainQut, rbcnt;

QGai nQut ,

/* Open the input file phzsamp.txt. */

if ((filepnt
fprintf(stderr,

found.\n\n");

= fopen("phzsanmp.txt", "r")) == NULL)

"\ n\nTERM NAL FAULT: File phzsanp.txt not

/* Process each phase sanple in the file phzsanmp.txt. */

nunof sanps = 0;

while (fscanf(filepnt,

{

"ox", &phzdat) != ECF)

47

/* Process the new phase sanple in each range bin and store the
result. */

for (rbcnt = 0; rbcnt < rangebins; rbcnt ++)

{
/* Increnent the phase. */
phzaddout = phzdat + phzincdat[rbcnt];
phzaddout = phzaddout & 0x0000001F
/* Calculate | for each range bin and store the result. */
| LUTQut = costab[phzaddout];
| Gai nQut = | LUTQut << anpscal dat[rbcnt];
if (1GinQut >= 0)
| Gai nQut = | Gai nQut >> 5;
el se
| Gai nOut = (1 Gai nQut >> 5) | OxFFFFE00O;
| Gai nQut = | Gai nQut & O0xO0000FFFF
| partres[nunof sanps + rbcnt][rbcnt] = | Gai nQut;
/* Calculate Q for each range bin and store the result. */
QLUTQut = si nt ab[phzaddout];
QGai nQut = QUTQut << anpscal dat[rbcnt];
if (QGainQut >= 0)
Q@i nQut = Q@i nQut >> 5;
el se
QGai nQut = (QGai nQut >> 5) | OxFFFFE000;
Qi nQut = QGai nQut & Ox0000FFFF;
Qoartres[numofsanps + rbent][rbent] = QGi nQut;
}

/* Increnent the nunber of phase sanples counter. */
nunof sanps++

} /* End of outside while [oop. */

/[* Close input file. */

fclose(filepnt);

} /* End of function rdphzsanp. */

/* Sum partial results in the array partres and wite */
/* final suns to the output file landQout.txt. */
sunpartres()

{

/* Local Variables */
48

FILE *fil epnt;

int sanmpnum rbnum finlout, finQout, I0OF, QOF, signofA signofB,
si gnof sum

/* Open output file for witing. */
if ((filepnt = fopen("landQout.txt", "w')) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File landQout.txt cannot be
witten.\n\n");

/* put headers in output file */

fprintf(filepnt, " |_OF Qut | out Q OF Qut Qout\n");
fprintf(filepnt, " -------- —--mno oo oo \n\n");

/* for all phase sanples that were read in */

for (sanmpnum = 0; sanpnum < (nunofsanps + rangebins - 1); sanmpnumt+)

{

finlout finQut = IOF = QOF = 0; /* initialize final result

*/

rangebins - 1;
while (rbnum >= 0)

{

rbnum

signof A = (finlout >> 15) & 0x00000001;
(I'partres[sanpnuni[rbnun] >> 15) & 0x00000001;
finlout = (finlout + Ipartres[sanpnun[rbnun]) & O0xO0000FFFF;
si gnof sum = (finlout >> 15) & 0x00000001;
if ((signofA == 0) && (signofB == 0) && (signofsum== 1))
| CF = 1,
if ((signof A == 1) && (signofB == 1) && (signofsum == 0))
IOF = 1,

si gnof B

signof A = (finQout >> 15) & 0x00000001;
signof B = (Qoartres[sanpnuni[rbnun]i >> 15) & 0x00000001;
finQut = (finQout + Qpartres[sanpnun[rbnun]) & O0x0000FFFF;
si gnof sum = (finQout >> 15) & 0x00000001;
if ((signofA == 0) && (signofB == 0) && (signofsum== 1))
QOF = 1;
if ((signofA == 1) && (signofB == 1) && (signofsum == 0))
QF = 1;

rbnum-;

}

/* Print out result to output file. */

49

fprintf(filepnt, " % 0x%94X % ox%®4X\ n",
|OF, finlout, QOF, finQout);

} /* end of outer for |oop */
/* Close output file. */
fclose (filepnt);

} /* End of function sunpartres. */

mai n()

/* Local Variables */
clock t start, finish;
doubl e durati on;
FI LE *fil epnt;
start=cl ock();
/* Read in phase increment data for each range bin. */
rdphzi nc();
/* Read in anplitude scaling data for each range bin. */
rdanmpscal () ;
/* Initialize global storage arrays. */
initarrays();
/* Read in pul se phase sanples and calcul ate partial results. */
rdphzsanmp();
/* Sum partial results and output suns. */
sunmpartres();
fini sh=cl ock();
duration = (double)(finish - start) / CLOCKS PER SEC,
/* Open output file for witing. */
if ((filepnt = fopen("Time.txt", "w')) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File Tine.txt cannot be
witten.\n\n");

/* Print out result to output file. */

fprintf(filepnt, "Time to conplete % sanples: %.4f seconds.\n",
nunof sanps, duration);

/* Close output file. */
fclose (filepnt);

} /* End of main. */

50

APPENDI X B

Thi s appendi x contains the versions of the code before
they were ported to the SRC-6E.

A D- TYPE FLI P FLOP
library |EEE;
use | EEE. STD LCA C 1164. al | ;
entity DFlipFlop is
port (CLK, LD, RESET, D. in bit;
Q inout bit; Quot: out bit :="1");
end DFLi pFl op;
architecture Equations of DFlipFlop is
begi n
process (CLK, LD, RESET)
begi n
if CLK="1" and CLK EVENT then
if RESET='"1'" then
Q<="0";
elsif LD="1" then
Q<=D
end if;
end if;
end process;
ot <= not Q

end Equati ons;

B. 5-BI T REG STER
library |EEE;
use | EEE. STD LCA C 1164. al | ;
entity Register5 is
port (CLK, LD RESET: in bit; D5: in bit_vector (4 downto 0);

@: inout bit _vector (4 downto 0); bnot: out bit_vector (4
downto 0));

end Regi sterb5;

architecture Register5 of Register5 is
51

conponent DFl i pFl op

port (CLK, LD, RESET, D:. in bit;

Q inout bit; Qnot: out bit);
end conponent;
begi n

DFFO: DFlipFlop port map (CLK, LD, RESET, D5(0), @b(0),
@not (0));

DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), @&(1),
Qnot (1));

DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), &(2),
@not (2));

DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), @b(3),
Qnot (3));

DFF4: DFli pFlop port map (CLK, LD, RESET, D5(4), &b(4),
Gnot (4));

end Regi sterb5;

C. 8-BI T REG STER
library |EEE;
use | EEE. STD LOCd C 1164. al | ;
entity Register8 is
port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

@: inout bit_vector (7 downto 0); Bnot: out bit_vector (7
downto 0));

end Regi ster8;
architecture Register8 of Register8 is
conponent DFli pFl op

port (CLK, LD, RESET, D:. in bit;

Q inout bit; Qnot: out bit);
end conponent;
begi n

DFFO: DFlipFlop port map (CLK, LD, RESET, D8(0), @B(0),
@not (0)) ;

DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), 8B(1),
Q@not (1));

DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), @B(2),
@not (2));

DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), @B(3),
Q@not (3));

DFF4: DFlipFlop port map (CLK, LD, RESET, D8(4), @8B(4),
@not (4));

52

DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), @B(5),
Q@not (5));

DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), @B(6),
@not (6)) ;

DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), @(7),
Q@not (7));

end Regi ster8;

D. 13-BI T REA STER
library |EEE;
use | EEE. STD LOA C 1164. al | ;
entity Registerl3 is
port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

QL3: inout bit_vector (12 downto 0); Ql3not: out bit _vector (12
downto 0));

end Register13;
architecture Registerl3 of Registerl3 is
conponent DFl i pFl op
port (CLK, LD, RESET, D: in bit;
Q inout bit; Qnot: out bit);
end conponent;
begi n
DFFO: DFli pFlop port map (CLK, LD, RESET, D13(0), QL3(0),
QL3not (0)) ;

DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1),
QL3not (1)) ;

DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2),
QL3not (2));

DFF3: DFlipFlop port map (CLK, LD, RESET, D13(3), Q13(3),
QL3not (3)) ;

DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), Ql3(4),
Ql3not (4)) ;

DFF5: DFli pFlop port map (CLK, LD, RESET, D13(5), QL3(5),
Ql3not (5));

DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Q13(6),
QL3not (6)) ;

DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), Q3(7),
QL3not (7)) ;

DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8),
QL3not (8)) ;

DFF9: DFli pFlop port map (CLK, LD, RESET, D13(9), Q13(9),
QL3not (9)) ;

53

DFF10: DFli pFl op port
QL3not (10));

DFF11: DFli pFl op port
QL3not (11));

DFF12: DFli pFl op port
QL3not (12));

end Registerl3;

map (CLK, LD,

map (CLK, LD,

map (CLK, LD,

E. 17-BI T REA STER
library |EEE;

use | EEE. STD LOCd C 1164. al | ;
entity Registerl?7 is

(CLK, LD, RESET:

i nout

port in bit; D17:

QL7:
downto 0));

end Registerl7;

architecture Registerl7 of Registerl7 is

bit_vector

conponent DFl i pFl op

port (CLK, LD, RESET,D:. in bit;

Q inout bit; Qnot: out bit);
end conponent;
begi n

DFFO: DFli pFlop port map (CLK, LD,
Ql7not (0)) ;

DFF1: DFlipFlop port map (CLK, LD,
Ql7not (1)) ;

DFF2: DFli pFlop port map (CLK, LD,
QL7not (2));

DFF3: DFlipFlop port map (CLK, LD,
Ql7not (3));

DFF4: DFlipFlop port map (CLK, LD,
QL7not (4));

DFF5: DFli pFlop port map (CLK, LD,
Ql7not (5)) ;

DFF6: DFlipFlop port map (CLK, LD,
Ql7not (6));

DFF7: DFlipFlop port map (CLK, LD,
QL7not (7)) ;

DFF8: DFli pFlop port map (CLK, LD,
Ql7not (8));

DFF9: DFlipFlop port map (CLK, LD,
QL7not (9)) ;

54

RESET,

RESET,

RESET,

in bit_vector
(16 downto 0);

D13(10),

D13(11),

D13(12),

QL3(10),

QL3(11),

QL3(12),

QL7not: out bit_vector
RESET, D17(0), QL7(0),
RESET, D17(1), QL7(1),
RESET, D17(2), QL7(2),
RESET, D17(3), QL7(3),
RESET, D17(4), QL7(4),
RESET, D17(5), QL7(5),
RESET, D17(6), QL7(6),
RESET, D17(7), QL7(7),
RESET, D17(8), QL7(8),
RESET, D17(9), QL7(9),

(16 downto 0);

(16

DFF10: DFli pFl op

QlL7not (10));

DFF11: DFli pFl op

Ql7not (11));

DFF12: DFli pFl op

Ql7not (12));

DFF13: DFli pFl op

QL7not (13));

DFF14: DFli pFl op

QlL7not (14));

DFF15: DFli pFl op

Ql7not (15));

DFF16: DFli pFl op

QlL7not (16));
end Registerl7;

F.

FULL ADDER

library | EEE
use | EEE. STD LOd C 1164. al | ;
entity Full Adder is

port (X, Y, Cin:
Cout, Sum out b

end Ful | Adder;

architecture Equations of Full Adder

begi n

Sum <= X xor Y X

Cout <= (X and Y) or

end Equati ons;

G

port

port

port

port

port

port

port

map (CLK,

map (CLK

map (CLK

in bit;

it);

or Cin;

is

LD,

LD,

LD,

LD,

LD,

LD,

LD,

(X and G n) or

RESET, D17(10),

RESET, D17(11),

RESET, D17(12),

RESET, D17(13),

RESET, D17(14),

RESET, D17(15),

RESET, D17(16),

(

Y and Cin);

FULL ADDER W TH OVERFLOW SI GNAL
library | EEE
use | EEE. STD LCA C 1164. al | ;
entity Full AdderQV is

port (G, Cout,
Co, OvVou

end Ful | Adder Ov;

architecture Equations of Full AdderQOV is

begi n

Co <= Cout;

Vi n:

t: out

in bit;
bit);

55

QL7(10),

Q7(11),

QAL7(12),

QL7(13),

QL7(14),

QL7(15),

QL7(16),

Ovout <= OvVin or (C xor Cout);

end Equati ons;

H. 5-BI T ADDER
library |EEE;
use | EEE. STD LCA C 1164. al | ;
entity Adder5 is
port (A, B: in bit_vector(4 downto 0);
S: out bit_vector(4 downto 0);
end Adder 5;
architecture Adder5 of Adder5 is
conponent Ful | Adder
port (X, Y, Cin: in bit;
Cout, Sum out bit);
end conponent;
signal C bit_vector(4 downto 1);

begi n

G
Co:

in bit;
out bit);

FAO: Ful | Adder port map (A(O), B(0), G, C(1), S(0));
FAl: Ful | Adder port map (A(1), B(1), C(1),
FA2: Ful | Adder port map (A(2), B(2), C(2),
FA3: Ful | Adder port map (A(3), B(3), C(3),
FA4: Ful | Adder port map (A(4), B(4), C(4),

end Adder5;

l. 16-BI T ADDER W TH OVERFLOW SI GNAL

library |EEE;
use | EEE. STD LOd C 1164. al | ;
entity Adder16 is

port (A, B: in bit_vector(15 downto 0);
S: out bit_vector(16 downto 0);

end Adder 16; --bit 16 of Sis overflow
architecture Adder16 of Adder16 is
conponent Ful | Adder

port (X, Y, Cin: in bit;

Cout, Sum out bit);
end conponent;
conponent Ful | Adder OV

port (C, Cout, OVin: in bit;

56

0!
Co:

aA2), S(1));
aA3), S(2));
a4), S(3));
Co, S(4));
Ovin: in bit;
out bit);

Co, Ovout:

end conponent;

si gnal
begi n
FAO:
FAL:
FA2:
FA3:
FA4:
FA5:
FAG:
FAT:
FA8:
FA9:

FA10:
FA11:
FA12:
FA13:
FA14:
FA15:
FAOQV:

Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder
Ful | Adder

Ful | Adder OV port

end Adder 16;

J. LUT

library | EEE
use | EEE. STD LCA C 1164. al | ;
use bit_pack.all;
entity ROMLUT is

port (SIN

CCS: out

port
port
port
port
port
port
port
port
port
port
port
port
port
port
port
port

out b

map
map
map
map
map
map
map
map
map
map
map
map
map
map
map

map

it);

C. bit_vector(16 downto 1);

(AC0),
(A(D),
(A(2),
(A(3),
(A(4),
(A(5),
(A(6),
(A7),
(A(8),
(AC9),
(A(10),
(A(11),
(A(12),
(A(13),
(A(14),
(A(15),

map (C(15),

bit_vector(8 downto 1);

B(0),
B(1),
B(2),
B(3),
B(4),
B(5),
B(6),
B(7),
B(8),
B(9),
B(10),
B(11),
B(12),
B(13),
B(14),
B(15),
c(16),

G, 1),
A1),
A 2),
a3),
a4),
aA5),
a6),
A7),
as),
x9),
¢(10),
a(11),
a(12),
a(13),
a(14),
a(15),
OVi n,

FIVEBI TS:in bit_vector(5 downto 1));

end ROWLUT;

architecture ROMLUT of ROMLUT is
type ROMLUT is array (0 to 31) of bit_vector(15 downto 0);

const ant

FSM ROMLUT: ROMLUT := --

("0000000001112111", "0001100101111101", "0011000101110101", 010001110110
1010","0101101001011010", "0110101001000111","0111010100110001", "0111110
100011001","0111111100000000", "0111110111100111","0111010111001111","01
10101010111001","0101101010100110", "0100011110010110", "0011000110001011
","0001100110000011", "0000000010000001","1110011110000011", "11001111100

57

o(2),
o(3),
o(4),
o(5),
o(6),
o),
o(8),
o9),
o(10),

S(0));

S(1));
S(2));
S(3));
S(4));
S(5));
S(6));
S(7));
S(8));
S(9));
C(11), S(10));
C(12), S(11));
C(13), S(12));
C(14), S(13));
C(15), S(14));
C(16), S(15));
Co, S(16));

8 bits of sine and 8 bits of cosine

01011","1011100110010110","1010011010100110", "1001011010111001", "100010
11110011211","1000001111100111", "1000000100000000", *1000001100011001","1
000101100110001", "1001011001000111","1010011001011010", "101110010110101
0","1100111101110101","1110011101111101");

begi n
process (FI'VEBI TS)
vari abl e ROMLUTVal ue: bit_vector (15 downto 0);
begi n

ROMLUTVal ue: = FSM _ROMLUT(vec2i nt (FI VEBI TS)) ;
SIN <= ROMLUTVal ue(15 downto 8);
COs <= ROMLUTVal ue(7 downto 0);
end process;
end ROMLUT;

K. CONTROL LOGE C BLOCK
library |EEE;
use | EEE. STD LCA C 1164. al | ;
entity Control Logic is
port (ODVin, URB, PSVin, CLK, OPER in bit;
CLR13, CLR17: out bit :='"1'; ODVout, PSVout: out bit);
end Control Logi c;
architecture Control Logic of Control Logic is
conponent DFli pFl op
port (CLK, LD, RESET, D:. in bit;
Q inout bit; Qot: out bit);
end conponent;

si gnal
RESET, D1, Q1, QLNot , D2, @, @2Not , D3, @3, @BNot , D4, 4, 4Not , PSVD, PSVQ, PSVQNot
tbit;
begi n
RESET <= '0';

PSVFF: DFlipFlop port map (CLK, OPER RESET, PSVD, PSVQ
PSVQNot) ;

DFF1: DFLi pFl op port map(CLK, OPER, RESET, D1, Ql, QLNot);

DFF2: DFLi pFl op port map(CLK, OPER, RESET, D2, @2, @Not);
DFF3: DFLi pFl op port map(CLK, OPER, RESET, D3, @, (@BNot);
DFF4: DFLi pFl op port map(CLK, OPER, RESET, D4, 4, (4Not);

process (URB, ODVin, PSVin)
begi n

PSVD <= PSVi n;
58

DL <= URB and PSVQ
D2 <= QL
D3 <= ODVin or @Q;
D4 <= &B;
CLR13 <= @2Not;
CLR17 <= @BNot;
PSVout <= PSVQ
ODVout <= 4;

end process;

end Control Logi c;

L. SH FTER

library | EEE

use | EEE. STD LOd C 1164. al | ;
use bit_pack.all;

entity GainShifter is

port (Control:in bit_vector(4 dowto 1); Data: in bit_vector(8

downto 1);

Qut put: out bit_vector(13 downto 1));
end Gai nShifter;
architecture GainShifter of GainShifter is
begi n

process (Control, Data)

variable C, shift, resolution, DataStop, QutStart, Qut-
St op: i nt eger

variabl e Ones:bit_vector(13 downto 1) :="1111111111111";
begi n
C := vec2int(Control);
case Cis
when 0 to 2 => shift
resolution := C+3;
when 3 to 4 => shift
resol uti on :=6;
when 5 to 7 => shift

if C=5 then resolution :=7;

I
0O

I
w

n
o
=

el se resol ution : =8;
end if;
when 8 to 10 => shift := G4,

59

if C=8 then resolution :=7;
8;

el se resolution :
end if;
when 11 to 12 => shift := 7;
resol ution :=8;
when 13 to 15 => shift := CG5;
resol ution :=8;
when others => -- summon bl ue screen of death
end case
Dat aSt op: =9-resol uti on
QutStart: =3+shift;
Qut St op: =Qut start-resol uti on+l
CQut put <= "0000000000000"
Qut put (Qut Start downto Qut Stop) <= Data (8 downto DataS-

top);
if Data(8)="1" then --need to preserve the sign bit
here
Qut put (13 downto resolution) <= Ones(13 downto reso-
[ution);

end if;
end process;
end Gai nShifter;

M ONE RANGE BI' N
library | EEE

use | EEE. STD LCA C 1164. al | ;
entity FakeRadarChip is

port (PhaseSanp, Phaselnc: in bit_vector (5 downto 1); Gain: in
bit vector (4 downto 1);

BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin
OPER, PRB, UNP: in bit;

O herBi nDataSIN, G herBi nDataCOS: in bit_vector (17 downto 1);

Q I: out bit_vector (17 downto 1); ODVout, PSVout: out bit;
DRFM out bit_vector (5 downto 1));

end FakeRadar Chi p;
architecture FakeRadar Chi p of FakeRadarChip is
conponent Register5 is
port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0);

@: inout bit _vector (4 downto 0); Qbnot: out bit_vector (4
downto 0));

60

end conponent;

conponent Register8 is
port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);
@B: inout bit_vector (7 downto 0); Bnot: out bit_vector (7
downto 0));
end conponent;
conponent Registerl3 is
port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);
QL3: inout bit_vector (12 downto 0); Ql3not: out bit_vector (12
downto 0));

end conponent;

conponent Registerl?7 is

port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

QL7: inout bit_vector (16 downto 0); Ql7not: out bit_vector (16
downto 0));
end conponent;
conponent Adder5 is

port (A, B: in bit_vector(4 downto 0); C: in bit;

S: out bit_vector(4 downto 0); Co: out bit);

end conponent;
conponent Adder16 is

port (A, B: in bit_vector(15 downto 0); C, OvVin: in bit;

S: out bit_vector(16 downto 0); Co: out bit);
end conponent;
conponent ROMLUT is
port (SIN, COS:.out bit _vector(1l to 8);
FIVEBI TS:in bit_vector(1l to 5));

end conponent;
conponent GainShifter is

port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

Qut put: out bit_vector(13 downto 1));
end conponent;
conponent Control Logic is

port (ODVin, URB, PSVin, CLK, OPER in bit;

CLR13, CLR17, ODVout, PSVout: out bit);

end conponent;

61

si gnal

QQut Regl, QNot Qut Regl, QQuUt Reg2, ONot Qut Reg2, QQuUt Reg3, ONot Qut Reg3, QQut Reg4
, Q\ot Qut Reg4,

QQut Reg5, QNot Qut Reg5, QQut Reg6, QNot Qut Reg6, Qut Add1: bit_vector (5
downto 1);

si gnal QQut Reg7, QNot Qut Reg7, QQut Reg8, QNot Qut Reg8, LUTSI N, LUTCCS:
bit vector (8 downto 1);

si gnal QOut Reg9, QNot Qut Reg9, QQut Reg10, QNot Cut Reg10, CQut ShiftSIN, Qut-
Shift COS: bit_vector (13 downto 1);

si gnal

QQut Regll, QNot Qut Regl1, QQut Regl2, QNot Qut Regl2, QQut Regl13, QNot Qut Regl3, QO
ut Regl4, QNot Qut Reg14,

Qut Add2, Qut Add3: bit_vector (17 downto 1);
si gnal | nput Adder2, |nput Adder3: bit_vector (16 downto 1);
signal LD, CLR5, CLR8, CLR13, CLR17, C, Col, Co2, Co3: bit;
signal I nReg5: bit_vector (5 downto 1);
begi n

CLR5 <='0

CLR8 <='0

G <='0";

LD <= OPER

I nReg5(4 downto 1) <= Gain (4 downto 1);

I nNReg5(5) <= URB;

Regl: Register5 port map(CLK, LD, CLR5, Phaselnc(5 downto 1),
Qut Regl(5 downto 1), QNot Qut Regl(5 downto 1));

Reg2: Register5 port map(CLK, LD, CLR5, QQutRegl(5 downto 1),
QQut Reg2(5 downto 1), QNot Qut Reg2(5 downto 1));

Reg3: Register5 port map(CLK, LD, CLR5, PhaseSanp(5 downto 1),
QQut Reg3(5 downto 1), QNot Qut Reg3(5 downto 1));

Addl: Adder5 port map (QQut Reg2, QQut Reg3, C, CQut Addl(5 downto
1), Col);

Reg4: Register5 port map(CLK, LD, CLR5, CQutAddl(5 downto 1),
QQut Reg4(5 downto 1), QNot Qut Reg4(5 downto 1));

LUT: ROMLUT port map (LUTSIN(8 downto 1), LUTCOS(8 downto
1), Qut Reg4(5 downto 1));

Reg5: Register5 port map(CLK, LD, CLR5, |nReg5(5 downto 1),
QQut Reg5(5 downto 1), QNot Qut Reg5(5 downto 1));

Reg6: Register5 port map(CLK, LD, CLR5, QQutReg5(5 downto 1),
QQut Reg6(5 downto 1), QNot Qut Reg6(5 downto 1));

Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1),
QQut Reg7(8 downto 1), QNot Qut Reg7(8 downto 1));

Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1),
QQut Reg8(8 downto 1), QNot Qut Reg8(8 downto 1));

62

Shiftl: GainShifter port nap (QOut Reg6(4 downto 1), QQut Reg7(8
downto 1), Qut ShiftSIN(13 downto 1));

Shift2: GainShifter port map (QOut Reg6(4 downto 1), QQut Reg8(8
downto 1), Qut ShiftCOS(13 downto 1));

Reg9: Register13 port map(CLK, LD, CLR13, CutShiftSIN(13 downto
1), QutReg9(13 downto 1), Not Qut Reg9(13 downto 1));

Regl10: Register13 port map(CLK, LD, CLR13, CQutShiftCOS(13 downto
1), QutRegl0(13 downto 1), QNot Qut Regl0(13 downto 1));

Regll: Registerl7 port map(CLK, LD, '0', O herBinDataSI N(17
downto 1), QQutRegll(17 downto 1), QNot Qut Regll(17 downto 1));

Regl2: Registerl7 port nap(CLK, LD, '0', O herBi nDataCOS(17
downto 1), QQutRegl2(17 downto 1), QNot Qut Regl2(17 downto 1));

Add2: Adder 16 port map (I nput Adder2, QCutRegl1l(16 downto 1), G,
QQut Regl11(17), QutAdd2(17 downto 1), Co2);

Add3: Adder 16 port map (I nput Adder3, QQutRegl2(16 downto 1), G,
Qut Regl12(17), Qut Add3(17 downto 1), Co3);

Regl3: Registerl7 port map(CLK, LD, CLR17, CQutAdd2(17 downto 1),
Qut Regl13(17 downto 1), ONot Qut Regl3(17 downto 1));

Regl4: Registerl7 port map(CLK, LD, CLR17, CQutAdd3(17 downto 1),
QQut Reg14(17 downto 1), QNot Qut Regl4(17 downto 1));

Control: Control Logic port map (ODVin, URB, PSVin, CLK, OPER,
CLR13, CLR17, ODVout, PSVout);

| nput Adder 2(13 downto 1) <= QQut Reg9(13 downto 1);
| nput Adder 2(14) <= QQut Reg9(13);
| nput Adder 2(15) <= QQut Reg9(13);
| nput Adder 2(16) <= QQut Reg9(13);
| nput Adder 3(13 downto 1) <= QQut Regl0(13 downto 1);
| nput Adder 3(14) <= QQut Regl0(13);
| nput Adder 3(15) <= QQut Regl0(13);
| nput Adder 3(16) <= QQut Regl0(13);
DRFM 5 downto 1) <= QOut Reg3(5 downto 1);
Q <= QQut Reg13;
| <= QQut Regl4;
end FakeRadar Chi p;

N. TWO RANGE BI NS
library |EEE;

use | EEE. STD LCA C 1164. al | ;
entity TwoBins is

port (PhaseSanp, PhaselncO, Phaselncl: in bit_vector (5 downto
1);

63

Gain0, Ginl: in bit_vector (4 downto 1);BinSel ect0, BinSelectl:
in bit _vector (9 downto 1);

CLK, ODVin, URBO, URB1, PSVin, OPERO, OPER1, PRB0O, PRB1, UNPO,
UNP1:in bit;

O herBi nDataSIN, G herBi nDataCOS: in bit_vector (17 downto 1);

Q I|: out bit _vector (17 downto 1); @1, I1: inout bit_vector (17
downto 1); ODVout 0, ODVoutl, PSVoutO, PSVoutl:inout bit; CLR13outO,
CLR13out 1, CLR170utO, CLR17outl: out bit;

DRFMD, DRFML:inout bit_vector (5 downto 1));
end TwoBi ns;
architecture TwoBins of TwoBins is
conponent FakeRadarChip is

port (PhaseSanp, Phaselnc: in bit_vector (5 downto 1); Gain: in
bit_vector (4 downto 1);

BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin,
OPER, PRB, UNP: in bit;

O herBinDataSIN, O herBinDataCOS: in bit_vector (17 downto 1);

Q I: out bit_vector (17 downto 1); ODVout, PSVout, CLR13out,
CLR170ut: out bit; DRFM out bit_vector (5 downto 1));

end conponent;
begin -- BINO is the primary out put

Bl NO: FakeRadar Chi p port map (DRFML, Phasel ncO, Gain0O, BinSelect0, CLK,
ODVout 1, URBO, PSVoutl, OPERO,

PRBO, UNPO, Q1, 11, Q |, ODVoutO, PSVoutO, CLR13outO0,
CLR170ut 0, DRFMD);

Bl N1: FakeRadar Chi p port map (PhaseSanp, Phaselncl, Gainl, BinSelectl,
CLK, ODVin, URB1, PSVin, OPER1,

PRB1, UNP1l, O herBinDataSIN, O herBinbDataCOS, QL, 11, OD
Vout 1, PSVoutl, CLR13outl, CLR17outl, DRFM);

end TwoBi ns;

o FOUR RANCGE BI NS
library |EEE;

use | EEE. STD LOd C 1164. al | ;
entity FourBins is

port (PhaseSanp, Phasel ncO, Phasel ncl, Phasel nc2, Phasel nc3: in
bit _vector (5 downto 1);

Gai n0, Ginl, Gin2, Gin3: in bit_vector (4 downto 1);

CLK, ODbVin, PSVin:in bit; GQherBinDataSIN, O herBi nDat aCCS: in
bit _vector (17 downto 1);

Q I: out bit_vector (17 downto 1); ODVout, PSVout:out bit;
DRFMbut : out bit_vector (5 downto 1));

64

end Four Bi ns;
architecture FourBins of FourBins is
conponent FakeRadarChip is

port (PhaseSanp, Phaselnc: in bit_vector (5 downto 1); Gain: in
bit _vector (4 downto 1);

BinSelect: in bit_vector (9 downto 1); CLK, ODVin, URB, PSVin,
OPER, PRB, UNP: in bit;

O herBi nDat aSIN, O herBi nDataCOS: in bit_vector (17 downto 1);

Q I: out bit_vector (17 downto 1); ODVout, PSVout: out bit;
DRFM out bit_vector (5 downto 1));

end conponent;
signal Q, 11, @,12,&B,13: bit_vector (17 downto 1);
si gnal DRFMD, DRFML, DRFM2, DRFMB: bit_vector (5 downto 1);

si gnal ODVout 0, ODVout1l, ODVout?2, ODVout 3,
PSVout 0, PSVout 1, PSVout 2, PSVout 3: bi t ;

begin -- BINO is the primary out put

Bl NO: FakeRadar Chi p port map (DRFML, Phasel ncO, Gai n0O, "000000000",
CLK, ODVoutl1, '1', PSvoutl, '1',

1, "1, Q, 11, Q I, ODVoutO, PSVoutO, DRFM);

Bl N1: FakeRadar Chi p port map (DRFM2, Phasel ncl, Gainl, "000000000",
CLK, ODvout2, '1', PSvout2, '1',

1, "1, @, 12, @, 11, ODVoutl, PSVoutl, DRFM);

Bl N2: FakeRadar Chi p port map (DRFMB, Phaselnc2, Gain2, "000000000",
CLK, ODVout3, '1', PSvout3, '1',

1, "1, @, 13, @, 12, ObVout2, PSVout2, DRFM);

Bl N3: FakeRadar Chi p port map (PhaseSanp, Phaselnc3, Gain3, "000000000",
CLK, ODbVin, '1', PSVin, '1',

"1', '1', O herBinDataSIN, O herBi nDataCos, @, 13, 0D
Vout 3, PSVout 3, DRFM3);

ODVout <=0DVout O;
PSVout <=0DVout O;
DRFMout <=DRFMD;

end Four Bi ns;

65

TH'S PAGE | NTENTI ONALLY LEFT BLANK

66

APPENDI X C

Thi s appendi x contains the final version of the VHDL
code that was inplenmented on the SRC-6E and the support
files required to conpile and execute it.

A MACRO VHDL FI LE
library |EEE;
use | EEE. STD LCd C 1164. al | ;

entity DFlipFlop is

port (CLK, LD, RESET, D in bit;

Q inout bit; Quot: out bit :="1");
end DFLi pFl op;

architecture Equations of DFlipFlop is

begi n
process (CLK, LD, RESET)
begi n
if CLK="1" and CLK EVENT then
if RESET='1' then
Q<='0";
elsif LD="1" then
Q<=0D
end if;
end if;
end process;
ot <= not Q

end Equati ons;

entity Register5 is
port (CLK, LD, RESET: in bit; D5: in bit_vector (4 downto 0);

: inout bit_vector (4 downto 0); Qbnot: out bit_vector (4
downto 0));

end Regi sterb5;

architecture Register5 of Register5 is

67

conponent DFl i pFl op

port (CLK, LD, RESET, D:. in bit;

Q inout bit; Qnot: out bit);
end conponent;
begi n

DFFO: DFlipFlop port map (CLK, LD, RESET, D5(0), @b(0),
@not (0));

DFF1: DFlipFlop port map (CLK, LD, RESET, D5(1), @&(1),
Qnot (1));

DFF2: DFlipFlop port map (CLK, LD, RESET, D5(2), &(2),
@not (2));

DFF3: DFlipFlop port map (CLK, LD, RESET, D5(3), @b(3),
Qnot (3));

DFF4: DFli pFlop port map (CLK, LD, RESET, D5(4), &b(4),
Gnot (4));

end Regi sterb5;

entity Register8 is
port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

@: inout bit_vector (7 downto 0); Bnot: out bit_vector (7
downto 0));

end Regi ster8;

architecture Register8 of Register8 is
conponent DFli pFl op
port (CLK, LD, RESET, D:. in bit;
Q inout bit; Qnot: out bit);

end conponent;

begi n

DFFO: DFlipFlop port map (CLK, LD, RESET, D8(0), B(0),
Q@not (0));

DFF1: DFlipFlop port map (CLK, LD, RESET, D8(1), @8B(1),
@not (1)) ;

DFF2: DFlipFlop port map (CLK, LD, RESET, D8(2), @B(2),
Q@not (2));

DFF3: DFlipFlop port map (CLK, LD, RESET, D8(3), XB(3),
@not (3));

DFF4: DFli pFlop port map (CLK, LD, RESET, D8(4), B(4),
Q@not (4));

68

DFF5: DFlipFlop port map (CLK, LD, RESET, D8(5), @B(5),
Q@not (5));

DFF6: DFlipFlop port map (CLK, LD, RESET, D8(6), @B(6),
@not (6)) ;

DFF7: DFlipFlop port map (CLK, LD, RESET, D8(7), @(7),
Q@not (7));

end Register8

entity Registerl3 is
port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);

QL3: inout bit_vector (12 downto 0); Ql3not: out bit _vector (12
downto 0));

end Register13;

architecture Registerl3 of Registerl3 is
conponent DFl i pFl op

port (CLK, LD, RESET, D: in bit;

Q inout bit; Qnot: out bit);

end conponent;

begi n
DFFO: DFlipFlop port map (CLK, LD, RESET, D13(0), Q13(0),
QL3not (0)) ;

DFF1: DFlipFlop port map (CLK, LD, RESET, D13(1), Q13(1),
Ql3not (1)) ;

DFF2: DFlipFlop port map (CLK, LD, RESET, D13(2), Q13(2),
QL3not (2)) ;

DFF3: DFli pFlop port map (CLK, LD, RESET, D13(3), Q13(3),
QL3not (3));

DFF4: DFlipFlop port map (CLK, LD, RESET, D13(4), QL3(4),
Ql3not (4));

DFF5: DFlipFlop port map (CLK, LD, RESET, D13(5), Q13(5),
QL3not (5)) ;

DFF6: DFlipFlop port map (CLK, LD, RESET, D13(6), Ql3(6),
QL3not (6)) ;

DFF7: DFlipFlop port map (CLK, LD, RESET, D13(7), QL3(7),
QL3not (7)) ;

DFF8: DFlipFlop port map (CLK, LD, RESET, D13(8), Q13(8),
QL3not (8));

DFF9: DFlipFlop port map (CLK, LD, RESET, D13(9), Q13(9),
QL3not (9)) ;

69

DFF10: DFli pFl op port
QL3not (10));

DFF11: DFli pFl op port
QL3not (11));

DFF12: DFli pFl op port
QL3not (12));

end Registerl3;

entity Registerl?7 is
port (CLK, LD, RESET:

QL7: inout bit_vector
downto 0));

end Registerl7;

map (CLK, LD,

map (CLK, LD,

map (CLK, LD,

in

(16 downto 0);

bit;

D17:

architecture Registerl7 of Registerl7 is

conponent DFl i pFl op
port (CLK, LD, RESET,

D:

Q inout bit; Qnot: out

end conponent;

begi n

DFFO: DFl i pFl op port
QL7not (0)) ;

DFF1: DFli pFl op port
QL7not (1)) ;

DFF2: DFli pFl op port
Ql7not (2));

DFF3: DFli pFl op port
QL7not (3));

DFF4: DFli pFl op port
Ql7not (4));

DFF5: DFli pFl op port
QL7not (5)) ;

DFF6: DFli pFl op port
Ql7not (6)) ;

DFF7: DFli pFl op port
Ql7not (7)) ;

DFF8: DFl i pFl op port
QL7not (8));

DFF9: DFli pFl op port
Ql7not (9));

map

map

map

map

map

map

map

map

map

map

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

(CLK,

in bit;
bit):;

LD

LD

LD

LD

LD

LD

LD

LD

LD

LD

70

RESET, D13(10), QL3(10),

RESET, D13(11), QL3(11),

RESET, D13(12), QL3(12),

in bit_vector

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

Ql7not: out

D17(0),

D17(1),

D17(2),

D17(3),

DL7(4),

D17(5),

DL7(6),

DL17(7),

D17(8),

D17(9),

(16 downto

bit_ vector

QL7(0),

QL7(1),

QL7(2)

QL7(3),

QL7(4),

QL7(5),

QL7(6),

QL7(7)

QL7(8),

QL7(9)

0);
(16

DFF10:
QlL7not (10));

DFF11:
Ql7not (11));
DFF12:
Ql7not (12));
DFF13:
QL7not (13));
DFF14:
Ql7not (14));
DFF15:
Ql7not (15));

DFF16:
QlL7not (16));

DFl i pFl op

DFl i pFl op

DFl i pFl op

DFl i pFl op

DFl i pFl op

DFl i pFl op

DFl i pFl op

end Registerl7;

entity ROMLUT is

port

(SIN, COs: out

port

port

port

port

port

port

port

map

map

map

map

map

map

map

(CLK, LD,

(CLK, LD,
(CLK, LD,
(CLK, LD,
(CLK, LD,
(CLK, LD,

(CLK, LD,

bit_vector(8 downto 1);

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

RESET,

FIVEBI TS:in bit_vector(5 downto 1));

end ROWLUT;

archi tecture ROVMLUT of ROMLUT is

si gnal

begi n

ROMLUTVal ue :

with FIVEBI TS Sel ect

ROVMLUTVal ue <="0000000001111111"

"0001100101111101"
"0011000101110101"
"0100011101101010"
“0l101101001011010"
“0110101001000111"
"0111010100110001"
"0111110100011001"
"0111111100000000"
“0111110111100111"
“0111010111001111"
"0110101010111001"

when
when
when
when
when
when
when
when
when
when

when
71

bit_vector (15 downto 0);

when "00000",
"00001",
"00010",
"00011",
"00100",
"00101",
"00110",
"00111",
"01000",
"01001",
"01010",
"01011",

D17(10),

DL7(11),

D17(12),

D17(13),

D17(14),

D17(15),

D17(16),

-1
--2
--3
-4
--5
--6
-7
--8
--9
--A
--b

QL7(10),

Q7(11),

QAL7(12),

QL7(13),

QL7(14),

QL7(15),

QL7(16),

"0101101010100110"
"0100011110010110"
"0011000110001011"
"0001100110000011"
"0000000010000001"
"1110011110000011"
"1100111110001011"
"1011100110010110"
"1010011010100110"
"1001011010111001"
"1000101111001111"
"1000001111100111"
"1000000100000000"
"1000001100011001"
"1000101100110001"
"1001011001000111"
"1010011001011010"
“1011100101101010"
“1100111101110101"
"1110011101111101"
"0000000000000000"

when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when
when

SIN <= ROMLUTVal ue(15 downto 8);
COS <= ROMLUTVal ue(7 downto 0);
end ROMLUT;

entity Ful | Adder
(X Y, Gn:

port
Cout ,

is
in bit;

Sum out bit);

end Ful | Adder ;

architecture Equati ons of Full Adder

begi n

Sum <= X xor

Cout <= (X and Y) or

Y xor Cin;

end Equati ons;

entity Full AdderQOV is

(X and Cin) or

"01100", --C
"01101", --d
"01110", --E
"01111", --F
"10000", --10
"10001", --11
"10010", --12
"10011", --13
"10100", --14
"10101", --15
"10110", --16
"10111", --17
"11000", --18
"11001", --19
"11010", --1A
"11011", --1b
"11100", --1C
"11101", --1d
"11110", --1E
"11111", --1F
ot hers;
is

(Y and Cin);

72

- - Never

Cccurs

port (G, Cout, OVin: in bit;
Co, Ovout: out bit);
end Ful | Adder OV,

architecture Equations of Full AdderQV is
begi n

Co <= Cout;

Ovout <= OvVin or (G xor Cout);

end Equati ons;

entity Adder5 is
port (A, B: in bit_vector(4 downto 0);
S: out bit_vector(4 downto 0);
end Adder5;

architecture Adder5 of Adder5 is
conponent Ful | Adder
port (X, Y, Cn: in bit;
Cout, Sum out bit);
end conponent;
signal C bit_vector(4 downto 1);

begi n

C: in bit;
Co: out bit);

FAO: Ful | Adder port map (A(O), B(0), G, C(1), S(0));
FAl: Ful | Adder port map (A(1), B(1), C(1), C(2), S(1));
FA2: Ful | Adder port map (A(2), B(2), C(2), C(3), S(2));
FA3: Ful | Adder port map (A(3), B(3), C(3), C(4), S(3));
FA4: Ful | Adder port map (A(4), B(4), C(4), Co, S(4));

end Adder5;

entity CLAH4 is

port (A, B: in bit_vector(3 downto 0);
bit);

end CLAH4;

architecture CLAH4 of CLAH4 is
signal g0, g1, g2, g3, p0, pl, p2, p3: bit;
begi n

g0 <= A(0) and B(0);
73

Cin: in bit; Cout:

out

pO0 <= A(0) or B(0);
gl <= A(1) and B(1);
pl <= A(1l) or B(1);
g2 <= A(2) and B(2);
p2 <= A(2) or B(2);
g3 <= A(3) and B(3);
p3 <= A(3) or B(3);

Cout <= g3 or (p3 and g2) or (p3 and p2 and gl1) or (p3 and p2 and
pl and g0) or (p3 and p2 and pl and p0 and Cin);

end CLAH4;

entity CLAH8 is

port (A, B: in bit_vector(7 downto 0); Cin: in bit; Cout: out
bit);

end CLAHS;

architecture CLAH8 of CLAH8 is

signal g0, g1, 92, g3, 94, g5, g6, g7, p0, pl, p2, p3, p4, p5, p6, p7:
bit;

begin
g0 <= A(0) and B(0);
p0 <= A(0) or B(0);
gl <= A(1l) and B(1);
pl <= A(1l) or B(1);
g2 <= A(2) and B(2);
p2 <= A(2) or B(2);
g3 <= A(3) and B(3);
p3 <= A(3) or B(3);
g4 <= A(4) and B(4);
p4 <= A(4) or B(4);
g5 <= A(5) and B(5);
p5 <= A(5) or B(5);
g6 <= A(6) and B(6);
p6 <= A(6) or B(6);
g7 <= A(7) and B(7);
p7 <= A(7) or B(7);

Cout <= g7 or (p7 and g6) or (p7 and p6 and g5) or (p7 and p6 and
p5 and g4) or (p7 and p6 and p5 and p4 and g3) or

74

(p7 and p6 and p5 and p4 and p3 and g2) or (p7 and p6 and p5 and

p4 and p3 and p2 and gl) or

(p7 and p6 and p5 and p4 and p3 and p2 and pl and g0) or (p7 and

p6 and p5 and p4 and p3 and p2 and pl and pO and Ci n);
end CLAHS;

entity Adder16 is

port (A, B: in bit_vector(15 downto 0); C, OVvin: in bit;
S: out bit_vector(16 downto 0); Co: out bit);

end Adder16; --bit 16 of S is overfl ow

architecture Adder 16 of Adder16 is
conmponent CLAH4

port (A, B: in bit_vector(3 downto 0); Cin: in bit;
bit);

end conponent;
conponent CLAHS

port (A, B: in bit_vector(7 downto 0); Cin: in bit;
bit);

end conponent;

conponent Ful | Adder
port (X, Y, Cin: in bit;
Cout, Sum out bit);

end conponent;

conponent Ful | Adder OV
port (G, Cout, OVin: in bit;

Co, Ovout: out bit);

end conponent;

signal C bit_vector(16 downto 1);
signal dunmyl, dummy2, dummy3: bit;
begi n

Cout: out

Cout: out

FAO: Ful | Adder port map (A(O), B(0), G, C(1), S(0));
FAl: Ful | Adder port map (A(1), B(1), C(1), C(2), S(1));
FA2: Ful | Adder port map (A(2), B(2), C(2), C(3), S(2));
FA3: Ful | Adder port map (A(3), B(3), C(3), dumyl, S(3));

CLAHO: CLAH4 port map (A(3 downto 0), B(3 downto 0),

G, d4);

FA4: Ful | Adder port map (A(4), B(4), C(4), C(5), S(4));
FA5: Ful | Adder port map (A(5), B(5), C(5), C(6), S(5));

75

FA6: Ful | Adder port map (A(6), B(6), C(6), C(7), S(6));

FA7: Ful | Adder port map (A(7), B(7), C(7), dummy2, S(7));

CLAHL: CLAH8 port map (A(7 downto 0), B(7 downto 0), G, C(8));

FA8: Ful | Adder port map (A(8), B(8), C(8), C(9), S(8));

FA9: Ful | Adder port map (A(9), B(9), C(9), C(10), S(9));

FA10: Ful | Adder port map (A(10), B(10), C(10), C(11), S(10));

FA11l: Full Adder port map (A(11), B(11), C(11), dumy3, S(11));

CLAH2: CLAH4 port map (A(11 downto 8), B(1l1 downto 8), C(8),
aA12));

FA12: Ful | Adder port map (A(12), B(12), C(12), C(13), S(12));

FA13: Ful | Adder port map (A(13), B(13), C(13), C(14), S(13));

FA14: Ful | Adder port map (A(14), B(14), C(14), C(15), S(14));

FA15: Ful | Adder port map (A(15), B(15), C(15), C(16), S(15));

FAOV: Ful | Adder OV port map (C(15), C(16), OVin, Co, S(16));
end Adder 16;

entity Control Logic is
port (ODVin, URB, PSVin, CLK, OPER in bit;
CLR13, CLR17: out bit :="'1'; ODVout, PSVout: out bit);
end Control Logi c;

architecture Control Logic of ControlLogic is
conponent DFl i pFl op

port (CLK, LD, RESET, D: in bit;

Q inout bit; Qnot: out bit);
end conponent;

si gnal
RESET, D1, Q1, QLNot , D2, @, @2Not , D3, @3, @BNot , D4, 4, 4Not , PSVD, PSVQ, PSVQNot
cbit;
begi n
RESET <= '0'";

PSVFF: DFl i pFl op port map (CLK, OPER, RESET, PSVD, PSVQ
PSVQN\ot) ;
DFF1: DFLi pFl op port map(CLK, OPER, RESET, D1, Ql, QLNot);

DFF2: DFLi pFl op port map(CLK, OPER, RESET, D2, 2, 2Not);
DFF3: DFLi pFl op port map(CLK, OPER, RESET, D3, @, @Not);
DFF4: DFLi pFl op port map(CLK, OPER, RESET, D4, 4, 4Not);

PSVD <= PSVi n;
76

DL <= URB and PSVQ
D2 <= QL

D3 <= ODVin or @Q;
D4 <= &B;

CLR13 <= @2Not;
CLR17 <= @BNot;
PSVout <= PSVQ
ODVout <= 4;

end Control Logi c;

entity GainShifter is

port (Control:in bit_vector(4 downto 1); Data: in bit_vector(8
downto 1);

Qut put: out bit_vector(13 downto 1));
end GainShifter;

architecture GainShifter of GainShifter is

begi n
process (Control, Dat a)

begi n
Qut put (13 downto 1) <= "0000000000000"
case Control is
when "0000" => Qutput(3 downto 1) <= Data(8 downto 6);
if Data(8)="1" then --need to preserve the sign bit
Qut put (13 downto 4) <= "1111111111"

end if;

when "0001" => Qutput(4 downto 1) <= Data(8 downto 5);
if Data(8)="1" then --need to preserve the sign bit
Qut put (13 downto 5) <= "111111111"
end if;
when "0010" => Qutput(5 downto 1) <= Data(8 downto 4);
if Data(8)="1" then --need to preserve the sign bit
Qut put (13 downto 6) <= "11111111";
end if;
77

when

when

when

when

when

when

when

when

when

when

"0011" => Qutput(6 downto 1) <= Data(8 downto 3);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 7) <= "1111111";
end if;
"0100" => Qutput(6 downto 1) <= Data(8 downto 3);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 7) <= "1111111";
end if;
"0101" => Qutput(7 downto 1) <= Data(8 downto 2);

if Data(8)="1 then --need to preserve the sign bit

Qut put (13 downto 8) <= "111111";
end if;
"0110" => Qutput (8 downto 1) <= Data(8 downto 1);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 9) <= "11111"
end if;
"0111" => Qutput(9 downto 2) <= Data(8 downto 1);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 10) <= "1111";
end if;
"1000" => Qutput(7 downto 1) <= Data(8 downto 2);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 8) <= "111111";
end if;
"1001" => Qutput(8 downto 1) <= Data(8 downto 1);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 9) <= "11111"
end if;
"1010" => Qutput (9 downto 2) <= Data(8 downto 1);

if Data(8)="1 then --need to preserve the sign bit

Qut put (13 downto 10) <= "1111";
end if;
"1011" => Qutput (10 downto 3) <= Data(8 downto 1);

if Data(8)="1" then --need to preserve the sign bit

Qut put (13 downto 11) <= "111";
end if;
"1100" => Qutput (10 downto 3) <= Data(8 downto 1);

78

if Data(8)="1" then --need to preserve the sign bit
Qut put (13 downto 11) <= "111";
end if;
when "1101" => Cutput (11 downto 4) <= Data(8 downto 1);
if Data(8)="1 then --need to preserve the sign bit
Qut put (13 downto 12) <= "11";
end if;
when "1110" => CQutput (12 downto 5) <= Data(8 downto 1);
if Data(8)="1" then --need to preserve the sign bit
Qutput(13) <= "'1";

end if;
when "1111" => CQutput(1l3 downto 6) <= Data(8 downto 1);
when others => -- sunmon bl ue screen of death
end case

end process;
end GainShifter;

entity OneBin is
port (PhaseSanp, Phaselnc: in bit_vector (5 downto 1);
Gain: in bit_vector (4 downto 1);
oDVin, PSVin: in bit;
QO herBinDataSIN, OherBinDataCOS: in bit_vector (17 downto

1);
Q I: out bit_vector (17 downto 1);
ODVout, PSVout: out bit;
DRFM out bit_vector (5 downto 1);
CLK: in bit);

end OneBi n;

architecture OneBin of OneBin is
conponent Register5 is
port (CLK, LD, RESET: in bit; Db: in bit_vector (4 downto 0);

: inout bit_vector (4 downto 0); Qbnot: out bit_vector (4
downto 0));

end conponent;
conponent Register8 is
port (CLK, LD, RESET: in bit; D8: in bit_vector (7 downto 0);

79

@B: inout
downto 0));

bit_vector (7 downto 0);

end conponent;

Bnot :

out bit_vector (7

conponent Registerl13 is
port (CLK, LD, RESET: in bit; D13: in bit_vector (12 downto 0);
QL3: inout bit_vector (12 downto 0); Ql3not: out bit _vector (12
downto 0));

end conponent;

conponent Registerl?7 is

port (CLK, LD, RESET: in bit; D17: in bit_vector (16 downto 0);

QL7: inout bit_vector (16 downto 0); QLl7not: out bit _vector (16
downto 0));
end conponent;
conponent Adder5 is

port (A, B: in bit_vector(4 dowto 0); C: in bit;

S: out bit_vector(4 downto 0); Co: out bit);

end conponent;
conponent Adder 16 is

port (A, B: in bit_vector(15 downto 0); C, Ovin: in bit;

S: out bit_vector(16 downto 0); Co: out bit);
end conponent;
conponent ROMLUT is
port (SIN, COS:out bit_vector(1l to 8);
FIVEBI TS:in bit_vector(1l to 5));

end conponent;
conponent Gai nShifter is

port (Control:in bit_vector(4 dowto 1); Data: in bit_vector(8
downto 1);

Qut put: out bit_vector(13 downto 1));
end conponent;
conponent Control Logic is

port (ODVin, URB, PSVin, CLK, OPER: in bit;

CLR13, CLR17, ODVout, PSVout: out bit);

end conponent;

si gnal

QQut Regl, QNot Qut Regl, QQuUt Reg2, QNot Qut Reg2, QQuUt Reg3, ONot Qut Reg3, QQut Reg4

, QNot Qut Reg4,

Qout Reg5, QNot Qut Reg5, QOut Reg6, QNot Qut Reg6, Qut Add1: bit_vect or

downto 1);

80

(5

si gnal QQut Reg7, QNot Qut Reg7, QQut Reg8, QNot Qut Reg8, LUTSI N, LUTCCS:
bit vector (8 downto 1);

si gnal QQOut Reg9, QNot Qut Reg9, QQut Reg10, QNot Cut Reg10, CQut ShiftSIN, Qut-
Shift COS: bit_vector (13 downto 1);

si gnal

QQut Regll, QNot Qut Regl1, QQut Regl2, QNot Qut Regl2, QQut Regl13, QNot Qut Regl3, QO
ut Regl4, QNot Qut Regl4,

Qut Add2, Qut Add3: bit_vector (17 downto 1);
si gnal | nput Adder2, |nputAdder3: bit_vector (16 downto 1);

signal OPER, URB, LD, CLR5, CLR8, CLR13, CLR17, C, Col, Co2, Co3, Re-
set _lnact: bit;

signal I nReg5: bit_vector (5 downto 1);
begi n

OPER <="'1';

URB <= "1';

CLRs <= "'0";

CLR8 <= '0';

G <='0";

LD <= '1';

Reset _I nact <= '0";

I nReg5(4 downto 1) <= Gain (4 downto 1);

I nNReg5(5) <= URB;

Regl: Register5 port map(CLK, LD, CLR5, Phaselnc(5 downto 1),
Qut Reg1l(5 downto 1), QNot Qut Regl(5 downto 1));

Reg2: Register5 port map(CLK, LD, CLR5, QQutRegl(5 downto 1),
Qut Reg2(5 downto 1), QNot Qut Reg2(5 downto 1));

Reg3: Register5 port map(CLK, LD, CLR5, PhaseSanp(5 downto 1),
QQut Reg3(5 downto 1), QNot Qut Reg3(5 downto 1));

Addl: Adder5 port map (QQut Reg2, QQut Reg3, C, CQutAddl(5 downto
1), Col);

Reg4: Register5 port map(CLK, LD, CLR5, CQutAddl(5 downto 1),
QQut Reg4(5 downto 1), QNot Qut Reg4(5 downto 1));

LUT: ROMLUT port map (LUTSIN(8 downto 1), LUTCOS(8 downto
1), QQut Reg4(5 downto 1));

Reg5: Register5 port map(CLK, LD, CLR5, |InReg5(5 downto 1),
QQut Reg5(5 downto 1), QNot Qut Reg5(5 downto 1));

Reg6: Register5 port map(CLK, LD, CLR5, QQutReg5(5 downto 1),
QQut Reg6(5 downto 1), QNot Qut Reg6(5 downto 1));

Reg7: Register8 port map(CLK, LD, CLR8, LUTSIN(8 downto 1),
Qut Reg7(8 downto 1), QNot Qut Reg7(8 downto 1));

Reg8: Register8 port map(CLK, LD, CLR8, LUTCOS(8 downto 1),
QQut Reg8(8 downto 1), QNot Qut Reg8(8 downto 1));

81

Shiftl: GainShifter port nap (QOut Reg6(4 downto 1), QQut Reg7(8
downto 1), Qut ShiftSIN(13 downto 1));

Shift2: GainShifter port map (QOut Reg6(4 downto 1), QQut Reg8(8
downto 1), Qut ShiftCOS(13 downto 1));

Reg9: Register13 port map(CLK, LD, CLR13, CutShiftSIN(13 downto
1), QutReg9(13 downto 1), Not Qut Reg9(13 downto 1));

Regl10: Register13 port map(CLK, LD, CLR13, CQutShiftCOS(13 downto
1), QutRegl0(13 downto 1), QNot Qut Regl0(13 downto 1));

Regll: Registerl7 port map(CLK, LD, Reset_lnact, O herBi nData-
SIN(17 downto 1), QQutRegll(17 downto 1), Not QutRRegll(17 downto 1));

Regl2: Registerl7 port nmap(CLK, LD, Reset_Inact, O herBinData-
COsS(17 downto 1), QQutRegl2(17 downto 1), QNot Qut Regl2(17 downto 1));

Add2: Adder 16 port map (I nput Adder2, QCutRegl1l(16 downto 1), G,
QQut Regl11(17), QutAdd2(17 downto 1), Co2);

Add3: Adder 16 port map (I nput Adder3, QQutRegl2(16 downto 1), G,
Qut Regl12(17), Qut Add3(17 downto 1), Co3);

Regl3: Registerl7 port map(CLK, LD, CLR17, CQutAdd2(17 downto 1),
Qut Regl13(17 downto 1), ONot Qut Regl3(17 downto 1));

Regl4: Registerl7 port map(CLK, LD, CLR17, CQutAdd3(17 downto 1),
QQut Reg14(17 downto 1), QNot Qut Regl4(17 downto 1));

Control: Control Logic port map (ODVin, URB, PSVin, CLK, OPER,
CLR13, CLR17, ODVout, PSVout);

| nput Adder 2(13 downto 1) <= QQut Reg9(13 downto 1);
| nput Adder 2(14) <= QQut Reg9(13);

| nput Adder 2(15) <= QQut Reg9(13);

| nput Adder 2(16) <= QQut Reg9(13);

| nput Adder 3(13 downto 1) <= QQut Regl0(13 downto 1);
| nput Adder 3(14) <= QQut Regl0(13);

| nput Adder 3(15) <= QQut Regl0(13);

| nput Adder 3(16) <= QQut Regl0(13);

DRFM 5 downto 1) <= QQut Reg3(5 downto 1);

Q <= QQut Reg13;

| <= QQut Regl4;

end OneBi n;

entity FourBin is
port (Data, Signals: in bit_vector (63 downto 0);
Qut put:out bit_vector (63 downto 0); CLK: in bit);

end Four Bi n;

82

architecture FourBin of FourBin is

conponent OneBin is

port (PhaseSanp, Phaselnc: in bit_vector (5 downto 1);
Gain: in bit_vector (4 downto 1);
ODbVin, PSVin: in bit;

O herBi nDat aSI N, O herBi nDataCOS: in bit_vector (17 downto
1);

Q |: out bit _vector (17 downto 1);
ODVout, PSVout: out bit;

DRFM out bit_vector (5 downto 1);
CLK: in bit);

end conponent;

signal Q I, QL 11, Q,12,@&3,13, GherBinDataSIN, O herBi nDat aCCS:
bit_vector (17 downto 1);

si gnal DRFMD, DRFML, DRFM2, DRFMB: bit_vector (5 downto 1);

signal PSVin, ODVin, ODVoutO, ODVoutl, ODVout2, ODVout3, PSVoutO,
PSVout 1, PSVout 2, PSVout3: bit;

signal Gain0, Ginl, Gin2, Gin3: bit_vector (4 downto 1);

si gnal Phasel ncO, Phasel ncl, Phaselnc2, Phaselnc3, PhaseSanp:
bit_vector (5 downto 1);

signal URB: bit_vector (2 downto 1);
begin -- BINO is the primary out put

- - Dat a: Bit 63-41 not used,

--40- 37 anpscal [0], 36-33 anmpscal [1], 32-29 anpscal[2], 28-25 anp-
scal [3],

--24-20 phzincdat[0], 19-15 phzincdat[1], 14-10 phzincdat[2], 9-5
phzi ncdat[3], 4-0 phasesanple

--Signals:Bits 63-38 not used,
--37 PSVin, 36 ODVin, 35-34 URB,
--33-17 G herBi nDataSI N, 16-0 O her Bi nDat aC0OS

Gai n0 <= Data(40 downto 37);
Gai nl <= Data(36 downto 33);

83

Gai n2 <= Data(32 downto 29);

Gai n3 <= Data(28 downto 25);

Phasel ncO <= Data(24 downto 20);

Phasel ncl <= Data(19 downto 15);

Phasel nc2 <= Data(14 downto 10);

Phasel nc3 <= Data(9 downto 5);

PhaseSanp <= Data(4 downto 0);

PSVin <= Signal s(37);

ODVin <= Signal s(36);

URB <= Signal s(35 downto 34);

QO her Bi nDat aSI N <= Si gnhal s(33 downto 17);
O her Bi nDat aCOS <= Signal s(16 downto 0);

BI NO: OneBin port map (DRFML, Phasel ncO, Gain0, ODVoutl, PSVout 1,
Q, 11, Q I, Obvout0O, PSVoutO, DRFM), CLK);

BIN1l: OneBin port nap (DRFM2, Phaselncl, Gainl, ODVout?2, PSVout2, @,
12, QL, 11, ODVoutl, PSVoutl, DRFML, CLK);

BI N2: OneBin port map (DRFMB, Phasel nc2, Gain2, ODVout3, PSVout3, @@,
13, @@, 12, ODVout2, PSVout2, DRFM2, CLK);

BI N3: OneBin port nap (PhaseSanp, Phaselnc3, Gain3, ODVin, PSVin,
O herBi nDataSIN, O her Bi nDat aC0S, @3, |3, ODVout3, PSVout3, DRFM,
CLK) ;

Qut put (40) <=PSVout 0;

Qut put (39) <=0CDVout 0;

Qut put (38 downto 22)<=Q

Qut put (21 downto 5) <=I

Qut put (4 downt o 0) <=DRFM);

Qut put (63 downto 41)<="00000000000000000000000";

end Four Bi n;

B. MAKEFI LE

i

User defines FILES, MAPFILES, and BIN here
- o

FI LES = main.c

MAPFI LES = Four Bi nS. nt

BI N = Four Bi nTest

r

User defined macros info supplied here

#

(Leave commented out if not used)
o
MACROS = my_macr o/ four bi n. vhd
MY_BLKBOX = my_rmacr o/ f our bi n. box
MY NGO DIR = ny_nmacro

MY_I NFO = nmy_macro/fourbin.info
o
User supplied MCC and MFTN fl ags
- o
MY_MCCFLAGS =

MY_MFTNFLAGS =
o

CcC =icc #icc for Intel cc for G
FC =ifc # ifc for Intel f77 for Guu
LD =ifc # ifc for Intel cc for Guu
MY_CFLAGS =

MY_FFLAGS =
o

No nodifications are required bel ow
o

MAKIN ?= $(MC_ROOT)/ opt/srcci/conp/lib/AppRul es. make
i ncl ude $(MAKIN)

C. MACRO | NFO FI LE
BEG N_DEF "Four_Bin"
MACRO = " Four Bi n";
STATEFUL NG,
EXTERNAL = NG,
Pl PELI NED = YES;
LATENCY = 9;

| NPUTS = 2:
10 = INT 64 BITS (Datal63:0])

85

I1 = INT 64 BITS (Signal s[63:0])

QUTPUTS = 1:
Q0 = INT 64 BITS (Qutput[63:0])

INSIGNAL : 1 BITS "CLK"="CLOCK";

END_DEF

D. MACRO BLACKBOX FI LE

nmodul e FourBin (Data, Signals, Qutput, CLK) /* synthesis syn_bl ack_box
*/;

i nput [63:0] Data;

i nput [63:0] Signals;
out put [63:0] CQutput;
i nput CLK

endnodul e

E. C DRI VER PROGRAM

/* main.c */

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <lIi bmap. h>

#def i ne SAMPLE_MAX 500000 /* Maxi mum nunber of phase sanples. */

#defi ne PADDING 5 /* nunber of padding sets before and after the sam
ples */

voi d FourBi nS() ;
void *Cache_Al i gned_All ocate();
voi d Cache_ Aligned_Free();

int min () {

int i, nmap, mapnum nunof sanps, nbytes;

86

short phzsanpdat [SAMPLE MAX] ;

FILE *fileptr;

long 10, Q, O herBinDataSIN, O herBinbDataCOS

char phzincdat[4], anpscal dat[4];

char PSVin, ODVin, ODVoutO, PSVoutO, DRFM), binnunmber, URB
I ong I ong tenp, binprogram

| ong | ong* dat aa;

| ong | ong* dat ab

| ong | ong* dat ac;
/* Timng variables. */
doubl e tstart, tend, tcunme, ttotal

ext ern doubl e second();

/* initialization */

tstart = second();
mapnum = 0O;
nmp = 1,

O her Bi nDat aSl N=0;
O her Bi nDat aC0S=0;
ODVi n=0;

nunof sanps=0

/* Read in phase increment values. */
if ((fileptr = fopen("datafiles/phzinc.txt", "r")) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File phzinc.txt not
found.\n\n");

bi nnunber = 0;
while (fscanf(fileptr, "9%", &phzincdat[bi nnunber]) != EOF)
{

bi nnunmber ++;

}

fclose(fileptr);

/* Read in anplitude scaling values */
if ((fileptr = fopen("datafiles/anpscal.txt", "r")) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File anpscal.txt not
found.\n\n");

87

bi nnunmber = 0;
while (fscanf(fileptr, "%", &anpscal dat[binnunber]) != ECF)
{

bi nnumber ++;

}
fclose(fileptr);

/* Read in pul se phase sanmples */

if ((fileptr = fopen("datafil es/phzsanmp.txt", "r")) == NULL)
fprintf(stderr, "\n\nTERM NAL FAULT: File phzsanp.txt not

found.\n\n");

%4.9.

nunof sanps = 0;
while (fscanf(fileptr, "9%", &phzsanpdat[nunmofsanps]) != EOF)
{

nunof sanps++

}

fclose(fileptr);

tend = second();

tcune = tend - tstart;

ttotal = tcune;

printf ("\'n Nunber of input sanples: %", nunofsanps);

printf ("\n Time for disk access of input data: 9%49.10f", tcune);

tstart second();
(((nunof sanps+PADDI NG 2+3) / 4) *4) * 8

dat aa=Cache_Al i gned_Al | ocat e(nbyt es);

nbyt es

dat ab=Cache_Al i gned_Al | ocat e(nbyt es);
dat ac=Cache_Al i gned_Al | ocat e(nbyt es);

tend = second();
tcunme = tend - tstart;
ttotal = ttotal + tcune;

printf ("\n Time to allocate the data caches for the MAP
10f", tcune);

tstart = second();

/* pack the data as foll ows:

88

Data: Bit 63-41 not used,

40- 37 anpscal [0], 36-33 anmpscal [1], 32-29 anpscal [2], 28-25 anp-
scal [3],

24-20 phzincdat[0], 19-15 phzincdat[1], 14-10 phzincdat[2], 9-5
phzi ncdat [3], 4-0 phzsanpdat

Signal s:Bits 63-38 not used,
37 PSVin, 36 ODVin, 35-34 URB
33-17 O herBinDataSIN, 16-0 O her Bi nDat aCOS

pad the data with sets of zero inputs before and after the rea
data */

t enp=0;
temp=((l ong | ong) anpscal dat[0] & OxFLL);

t emp=t enp<<4 ((long |l ong) anpscal dat[1] & OxFLL);
t enp=t enp<<4 ((long long) anpscal dat[2] & OxFLL);
t enp=t enp<<4 ((long long) anpscal dat[3] & OxFLL);

t emp=t enp<<5 ((long I ong) phzincdat[1] & Ox1FLL);
((long I ong) phzincdat[2] & Ox1FLL);

bi nprogramrtenmp<<5 | ((long long) phzincdat[3] & Ox1FLL);

|
|
|
tenp=tenp<<5 | ((long long) phzincdat[0] & Ox1FLL);
|
t emp=t enp<<5
for (i=0; i<PADDING i++){

dat aa[i] =bi npr ogr am <<5;

dat aa[i +nunof sanps+PADDI NG =bi npr ogr am <<5;

dat ab[i]=0;
dat ab[i +nunof sanps+PADDI NG =0;
}
PSVi n=1;
URB=3;/*use all 4 rangebins (macro currently ignores this)*/
for (i = 0; i < nunofsanps; i++) {
dat aa[i +PADDI NG =bi nprogranxk<5 | ((long | ong) phzsanpdat|[i]
& Ox1FLL);
t enp=0;
temp=((long I ong) PSVin & Ox1LL);
temp=tenp<<l | ((long long) ODVin & Ox1LL);
temp=tenp<<2 | ((long long) URB & Ox3LL);
tenp=tenp<<17 | ((long long) O herBi nDataSIN & Ox1FFFFLL);
dat ab[i +PADDI NG =t enmp<<17 | ((long |l ong) O herBi nDat aC0S &
Ox1FFFFLL) ;

89

}

tend = second();
tcunme = tend - tstart;
ttotal

ttotal + tcune;

printf ("\n Time to pack the data for transfer to MAP: 949. 10f",
tcune);

tstart second();
/* allocate map to this problem*/
if (map_allocate (nmap)) {
fprintf (stdout, "Map allocation failed.\n");
exit (1);
}
tend = second();
tcune = tend - tstart;
ttotal = ttotal + tcune;

printf ("\n Tine for MAP allocation: 9%9.10f", tcune);

tstart = second();
/* call conmpute */
Four Bi nS (nunof sanps+PADDI NG 2, dataa, datab, datac, mapnum;
tend = second();
tcume = tend - tstart;
ttotal ttotal + tcune;
printf ("\n Time for MAP call: 99.10f", tcume);

tstart = second();
/* Open output file for witing. */
if ((fileptr = fopen("datafiles/landQout.txt", "w')) == NULL)

fprintf(stderr, "\n\nTERM NAL FAULT: File
| andQout . t xt cannot be witten.\n\n");

/* put headers in output file */
fprintf(fileptr, "lout Qout ODVout PSVout DRFMn");
fprintf(fileptr, "----- ---on o o oo \n");

/* unpack the results and send to output*/
for (i = 0; i < nunofsanps+PADDI NG*2; i ++) {

90

DRFMD=dat ac[i] & Ox1FLL;
| O=dat ac[i]>>5 & Ox1FFFFLL;

QD=dat ac[i]>>22

ODVout O=dat ac[i]>>39 & Ox1LL
PSVout O=dat ac[i]>>40 & Ox1LL;

fprintf(fileptr,

& Ox1FFFFLL;

"U95X %O5X

|0, Q0, ODVoutO, PSVoutO, DRFM);

}
fclose (fileptr);

tend = second();
tcune = tend - tstart;

ttotal = ttotal + tcune;

%91X 9%91X

w2X\n",

printf ("\n Time to unpack results and send to output file:

%49. 10f", tcune);
tstart = second();
/* free the map */

if (map_free (nmap)) {

printf ("Map deallocation failed. \n");

exit (1);
}
tend = second();
tcune = tend - tstart;

ttotal = ttotal + tcune;

printf ("\n Time to free the MAP

tstart = second();

Cache_Al i gned_Free((char *)dataa);
Cache_Ali gned_Free((char *)datab);
Cache_Ali gned_Free((char *)datac);

tend = second();
tcune = tend - tstart;

ttotal = ttotal + tcune;

9%49. 10f", tcune);

printf ("\n Tinme to free the data arrays: 9%9.10f",

printf ("\'n Total Tine:

%49. 10f\ n\ n",

91

ttotal);

tcune);

F. MAP CODE FI LE

/* FourBinS.nc */

#i ncl ude <l ibmap. h>

#defi ne | BANK MAX_OBM Sl ZE

void FourBinS (int n, long long a[],
mapno)

{
struct {
I ong I ong al [l BANK];
} banka;
struct {
[ong 1 ong bl [BANK];
} bankb;
struct {
I ong long cl[1BANK];
} bankc;
long | ong *al = banka. al
I ong | ong *hl = bankb. bl
I ong | ong *cl = bankc. cl

int i, nbytes;
/* nbytes = n*8;*/
nbytes = (((n+3)/4)*4)*8;

cnmRobm a(al, a, nbytes);
wai t _server_a();
cn2obm b (bl, b, nbytes);

wai t _server_b();

for (i =0; i <n; i++) {

long long b[],

Four _Bin(al[i], bl[i], &l[i]);

obnm2cmc (c, cl, nbytes);

wait _server_c();

92

long long c[],

i nt

00
01
02
03
04
05
06
07
08
09
0A
0B
0oC
(0]}
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

H

SAMPLE PHASE SAMPLE | NPUT FI LE

SAMPLE RANGE BI'N GAI'N | NPUT FI LE

93

| .

Nunber
Ti me
Ti
Ti
Ti

Ti
Ti
Ti
Tot al

nme
nme
nme
Ti me
nme
nme
me

SAMPLE SCREEN OQUTPUT

of input sanples:

for disk access of

32

i nput dat a:

to allocate the data caches for

to pack the data for transfer to MAP:
0. 5351942658

for MAP all ocati on:

for MAP call:

to unpack results and send to output file:

to free the MAP

to free the data arrays:

Ti me:

SAMPLE OUTPUT DATA FI LE

Qout

00000
00000
00000
00000
OFFFC
OFFFE
OFFFB
OFFFF
00001
00005
00007
0000A
0000C
0000D
0000E
0000E
0000E
0000D
0000B
0000A

ODVout

R = = T = T = T N e e e S S N N L a = = = = e

1. 6383440550

PSVout

B = = T = T = T T T = e e S e e S S S N Y

0. 0960569127

DRFM

1. 0062198973
0. 0000037104

94

0. 0002677690
0. 0000318932
0. 0000015922

0. 0005680144

OFFFO 00007 1 1 14
OFFEF 00005 1 1 15
OFFEE 00002 1 1 16
OFFEE OFFFE 1 1 17
OFFEE OFFFB 1 1 18
OFFEF OFFF7 1 1 19
OFFF1 OFFF5 1 1 1A
OFFF2 OFFF2 1 1 1B
OFFF6 OFFFO 1 1 1C
OFFF8 OFFEF 1 1 1D
OFFFB OFFEE 1 1 1E
OFFFF OFFEE 1 1 1F
00001 OFFEE 1 0 00
00005 OFFEF 1 0 00
00007 OFFF1 1 0 00
0000A OFFF2 1 0 00
OFFFD OFFFA 1 0 00
00006 OFFFA 1 0 00
OFFF8 00000 1 0 00
00000 00000 0 0 00
00000 00000 0 0 00
00000 00000 0 0 00

K. SAMPLE RANGE BI N PHASE ROTATI ON | NPUT FI LE
1F
11
1F
11

95

TH'S PAGE | NTENTI ONALLY LEFT BLANK

96

APPENDI X D

Thi s appendi x contains the raw data collected fromthe
three data sources. The data was edited for format and
presentation only by merging nultiple data files and screen
outputs into single text files.

A SRC- 6E MACRO DATA
Nunber of input sanples: 32

Time for disk access of input data: 0. 0002677690

Time to allocate the data caches for the MAP: 0. 0000318932
Time to pack the data for transfer to MAP: 0. 0000015922

Time for MAP al |l ocation: 0. 5351942658

Time for MAP call: 0. 0960569127

Time to unpack results and send to output file: 0. 0005680144
Time to free the MAP: 1.0062198973

Time to free the data arrays: 0. 0000037104

Total Time: 1. 6383440550

Nurber of input sanples: 32

Time for disk access of input data: 0. 0002689050

Time to allocate the data caches for the NAP: 0. 0000345652
Time to pack the data for transfer to MAP: 0. 0000015071

Time for MAP all ocati on: 0. 5559181052

Time for MAP cal |: 0. 0958363668

Time to unpack results and send to output file: 0. 0003943340
Time to free the MAP: 1. 0063609813

Time to free the data arrays: 0. 0000037825

Total Time: 1.6588185471

Nunber of input sanples: 32

Time for disk access of input data: 0. 0002782845

Tinme to allocate the data caches for the NAP: 0. 0000353730
Time to pack the data for transfer to MAP: 0. 0000015228

Tinme for MAP all ocati on: 0. 5466191977

Time for MAP call: 0. 0957191453

Time to unpack results and send to output file: 0. 0003934382

97

Tine to free the NAP: 1. 0064690704
Time to free the data arrays: 0. 0000035836
Total Tine: 1.6495196156

Nurber of input sanples: 32

Time for disk access of input data: 0. 0002708402

Time to allocate the data caches for the NMAP: 0. 0000354869
Time to pack the data for transfer to MAP: 0. 0000013993

Time for MAP all ocati on: 0. 5923142628

Time for MAP call: 0. 0958587045

Time to unpack results and send to output file: 0. 0003693907
Time to free the MAP: 1. 0066480303

Time to free the data arrays: 0. 0000032406

Total Tine: 1. 6955013552

Nunber of input sanples: 32

Tinme for disk access of input data: 0. 0002633170

Tinme to allocate the data caches for the NAP: 0. 0000347017
Time to pack the data for transfer to MAP: 0. 0000012340

Tinme for MAP all ocati on: 0. 5432007360

Time for MAP call: 0. 0957816167

Tinme to unpack results and send to output file: 0. 0003904607
Tinme to free the NAP: 1. 0066382354

Time to free the data arrays: 0. 0000032465

Total Tinme: 1. 6463135479

Nunber of input sanples: 64

Time for disk access of input data: 0. 0003175845

Tinme to allocate the data caches for the NAP: 0. 0000341569
Tinme to pack the data for transfer to NMAP: 0. 0000017385

Time for MAP al |l ocation: 0. 5683862600

Time for MAP call: 0. 0956988467

Time to unpack results and send to output file: 0. 0004762942
Tinme to free the NAP: 1. 0063969221

Time to free the data arrays: 0. 0000034788

Total Tine: 1.6713152818

98

Nunber of input sanples: 64

Time for disk access of input data: 0. 0003063767

Tinme to allocate the data caches for the NAP: 0. 0000392713
Time to pack the data for transfer to MAP: 0. 0000017731

Time for MAP allocation: 0. 5590026660

Time for MAP call: 0. 0955597495

Tinme to unpack results and send to output file: 0. 0004758422
Tinme to free the NAP: 1. 0067611845

Time to free the data arrays: 0. 0000035916

Total Time: 1. 6621504548

Nunber of input sanples: 64

Time for disk access of input data: 0. 0002826070

Tinme to allocate the data caches for the NAP: 0. 0000367635
Tinme to pack the data for transfer to NMAP: 0. 0000017988

Time for MAP al |l ocation: 0. 5498394886

Time for MAP call: 0. 0957414989

Time to unpack results and send to output file: 0. 0004572148
Tinme to free the NAP: 1. 0064087044

Time to free the data arrays: 0. 0000038783

Total Tine: 1.6527719543

Nunber of input sanples: 64

Time for disk access of input data: 0. 0002825416

Tinme to allocate the data caches for the NAP: 0. 0000316966
Time to pack the data for transfer to MAP: 0. 0000017237

Time for MAP al |l ocation: 0. 5604036079

Time for MAP call: 0. 0956780317

Time to unpack results and send to output file: 0. 0004765750
Time to free the MAP: 1.0067241372

Time to free the data arrays: 0. 0000034452

Total Time: 1.6636017589

Nunber of input sanples: 64

Time for disk access of input data: 0. 0002861433
Tine to allocate the data caches for the NAP: 0. 0000339728
Time to pack the data for transfer to MAP: 0. 0000015644

99

Tinme for MAP all ocati on: 0.5389705671

Tinme for MAP call: 0. 0957993332

Time to unpack results and send to output file: 0.0004734413
Time to free the MAP: 1. 0063321409

Time to free the data arrays: 0. 0000034946

Total Tine: 1. 6419006575

Nunber of input sanples: 128

Time for disk access of input data: 0. 0003499791

Tinme to allocate the data caches for the NAP: 0. 0000348569
Time to pack the data for transfer to MAP: 0. 0000021587

Time for MAP al |l ocation: 0. 5492326826

Time for MAP call: 0. 0956268387

Time to unpack results and send to output file: 0. 0006270098
Tine to free the MAP: 1. 0063932453

Time to free the data arrays: 0. 0000038566

Total Time: 1.6522706278

Nunber of input sanples: 128

Time for disk access of input data: 0. 0003540977

Time to allocate the data caches for the NMAP: 0. 0000365776
Time to pack the data for transfer to MAP: 0. 0000021408

Time for MAP all ocati on: 0. 5569221765

Time for MAP call: 0. 0958692052

Time to unpack results and send to output file: 0. 0006243340
Time to free the MAP: 1. 0060996530

Time to free the data arrays: 0. 0000032404

Total Time: 1. 6599114252

Nurmber of input sanples: 128

Time for disk access of input data: 0. 0003482387

Time to allocate the data caches for the NAP: 0. 0000330829
Time to pack the data for transfer to MAP: 0. 0000027293

Time for MAP all ocati on: 0. 5580912070

Time for MAP cal |: 0. 0958268696

Time to unpack results and send to output file: 0. 0006249647
Time to free the MAP: 1. 0061637045

100

Time to free the data arrays: 0. 0000035729
Total Tine: 1.6610943696

Nunber of input sanples: 128

Time for disk access of input data: 0. 0003452869

Time to allocate the data caches for the MAP: 0. 0000329286
Time to pack the data for transfer to MAP: 0. 0000021903

Time for MAP all ocati on: 0. 5476320571

Time for MAP call: 0. 0957660111

Tinme to unpack results and send to output file: 0. 0006117751
Time to free the MAP: 1. 0065463808

Time to free the data arrays: 0. 0000031959

Total Tine: 1. 6509398259

Nurmber of input sanples: 128

Time for disk access of input data: 0. 0003497200

Time to allocate the data caches for the NAP: 0. 0000313107
Time to pack the data for transfer to MAP: 0. 0000022150

Time for MAP all ocati on: 0. 6261321505

Tinme for MAP call: 0. 0957161797

Time to unpack results and send to output file: 0. 0006258458
Time to free the MAP: 1. 0062361960

Time to free the data arrays: 0. 0000034363

Total Tine: 1. 7290970540

Nunber of input sanples: 256

Time for disk access of input data: 0. 0004625537

Tinme to allocate the data caches for the NAP: 0. 0000414161
Time to pack the data for transfer to MAP: 0. 0000030873

Tinme for MAP all ocati on: 0. 5701080822

Time for MAP call: 0. 0957897472

Time to unpack results and send to output file: 0. 0009789201
Time to free the NAP: 1. 0057789229

Time to free the data arrays: 0. 0000029706

Total Tine: 1. 6731657000

Nunber of input sanples: 256

101

Time for disk access of input data: 0. 0004759619

Time to allocate the data caches for the NMAP: 0. 0000424247
Time to pack the data for transfer to MAP: 0. 0000031962

Tinme for MAP all ocati on: 0. 5605598434

Time for MAP call: 0. 0958398278

Time to unpack results and send to output file: 0. 0010340470
Time to free the MAP: 1. 0060577265

Time to free the data arrays: 0. 0000033858

Total Tine: 1.6640164134

Nunber of input sanples: 256

Tinme for disk access of input data: 0. 0004909334

Tinme to allocate the data caches for the NAP: 0. 0000418077
Time to pack the data for transfer to MAP: 0. 0000032721

Tinme for MAP all ocati on: 0. 5610595126

Time for MAP call: 0. 0957838385

Time to unpack results and send to output file: 0. 0010015783
Tinme to free the MVAP: 1. 0060574814

Time to free the data arrays: 0. 0000032188

Total Tine: 1.6644416428

Nunber of input sanples: 256

Time for disk access of input data: 0. 0004558661

Tinme to allocate the data caches for the NAP: 0. 0000427304
Tinme to pack the data for transfer to MAP: 0. 0000030734

Time for MAP al |l ocation: 0. 5659454288

Time for MAP call: 0. 0957831108

Time to unpack results and send to output file: 0. 0010010364
Tinme to free the NAP: 1. 0060677676

Time to free the data arrays: 0. 0000037963

Total Tine: 1.6693028099

Nunber of input sanples: 256

Time for disk access of input data: 0. 0004885800

Tinme to allocate the data caches for the NAP: 0. 0000416851
Time to pack the data for transfer to MAP: 0. 0000031890
Time for MAP al |l ocation: 0.5511499354

102

Tinme for MAP cal | : 0. 0961975577

Tinme to unpack results and send to output file: 0. 0010007792
Tinme to free the NAP: 1. 0055322002

Time to free the data arrays: 0. 0000034818

Total Tine: 1.6544174084

Nunber of input sanples: 512

Time for disk access of input data: 0. 0006995983

Tinme to allocate the data caches for the NAP: 0. 0000495407
Tinme to pack the data for transfer to MAP: 0. 0000059341

Time for MAP al |l ocation: 0. 5635743956

Time for MAP call: 0. 0958592651

Time to unpack results and send to output file: 0.0017114796
Tinme to free the NAP: 1. 0053390195

Time to free the data arrays: 0. 0000028657

Total Tine: 1.6672420986

Nunber of input sanples: 512

Time for disk access of input data: 0. 0007183850

Tinme to allocate the data caches for the NAP: 0. 0000513633
Time to pack the data for transfer to MAP: 0. 0000054903

Time for MAP al |l ocation: 0. 5580191022

Time for MAP call: 0. 0958093556

Time to unpack results and send to output file: 0.0017153421
Tine to free the MAP: 1. 0050138898

Time to free the data arrays: 0. 0000028241

Total Time: 1.6613357524

Nunber of input sanples: 512

Time for disk access of input data: 0. 0007295769

Time to allocate the data caches for the NMAP: 0. 0000498671
Time to pack the data for transfer to MAP: 0. 0000053103

Time for MAP all ocati on: 0. 5441085579

Time for MAP call: 0. 0957256651

Tinme to unpack results and send to output file: 0. 0017012210
Time to free the MAP: 1. 0051159665

Time to free the data arrays: 0. 0000031229

103

Total Ti ne: 1.6474392877

Nunber of input sanples: 512

Time for disk access of input data: 0. 0007316072

Tinme to allocate the data caches for the NAP: 0. 0000485241
Time to pack the data for transfer to MAP: 0. 0000066572

Time for MAP al |l ocation: 0. 5413774263

Time for MAP call: 0. 0957333604

Time to unpack results and send to output file: 0.0017187052
Tine to free the MAP: 1. 0052396681

Time to free the data arrays: 0. 0000030271

Total Time: 1. 6448589756

Nunber of input sanples: 512

Time for disk access of input data: 0. 0007073195

Time to allocate the data caches for the NMAP: 0. 0000512257
Time to pack the data for transfer to MAP: 0. 0000051294

Time for MAP all ocati on: 0. 5688409651

Time for MAP call: 0. 0961722968

Tinme to unpack results and send to output file: 0. 0017124555
Time to free the MAP: 1. 0049554719

Time to free the data arrays: 0. 0000037834

Total Tine: 1.6724486473

Nurmber of input sanples: 1024

Time for disk access of input data: 0. 0011598321

Time to allocate the data caches for the NAP: 0. 0000747768
Time to pack the data for transfer to MAP: 0. 0000107293

Time for MAP all ocati on: 0. 5627898064

Time for MAP call: 0. 0958103127

Time to unpack results and send to output file: 0. 0031125588
Time to free the MAP: 1. 0039292726

Time to free the data arrays: 0. 0000034244

Total Tine: 1.6668907131

Nunber of input sanples: 1024
Time for disk access of input data: 0.0011944289

104

Time to allocate the data caches for the NMAP: 0. 0000739026
Time to pack the data for transfer to MAP: 0. 0000107085

Time for MAP all ocati on: 0. 5614359006

Time for MAP call: 0. 0958402471

Tinme to unpack results and send to output file: 0. 0031293658
Time to free the MAP: 1. 0033827050

Time to free the data arrays: 0. 0000034058

Total Time: 1. 6650706644

Nurber of input sanples: 1024

Time for disk access of input data: 0. 0012244619

Time to allocate the data caches for the NMAP: 0. 0000784731
Time to pack the data for transfer to MAP: 0. 0000101171

Time for MAP all ocati on: 0. 5669450610

Time for MAP call: 0. 0956240124

Time to unpack results and send to output file: 0. 0031523541
Time to free the MAP: 1.0037887276

Time to free the data arrays: 0. 0000034323

Total Time: 1.6708266397

Nunber of input sanples: 1024

Time for disk access of input data: 0. 0011605509

Tinme to allocate the data caches for the NAP: 0. 0000752337
Time to pack the data for transfer to MAP: 0. 0000101676

Tinme for MAP all ocati on: 0. 6236788962

Time for MAP call: 0. 0958688937

Time to unpack results and send to output file: 0. 0031311201
Tinme to free the NAP: 1. 0035382028

Time to free the data arrays: 0. 0000033830

Total Tine: 1.7274664481

Nunber of input sanples: 1024

Time for disk access of input data: 0.0011683335

Tinme to allocate the data caches for the NAP: 0. 0000749340
Tinme to pack the data for transfer to NMAP: 0. 0000102182
Time for MAP al |l ocation: 0. 5578285100

Time for MAP call: 0. 0958067626

105

Time to unpack results and send to output file: 0. 0031323314

Time to free the MAP: 1. 0037003675
Time to free the data arrays: 0. 0000037855
Total Tine: 1.6617252427

Nunber of input sanples: 2048

Time for disk access of input data: 0.0021121742

Tinme to allocate the data caches for the NAP: 0. 0001252035
Time to pack the data for transfer to MAP: 0. 0000210125

Tinme for MAP all ocati on: 0. 5629239089

Time for MAP call: 0. 0960486161

Tinme to unpack results and send to output file: 0. 0059072306
Tinme to free the NAP: 1. 0108930274

Time to free the data arrays: 0. 0000037240

Total Tine: 1.6780348972

Nunber of input sanples: 2048

Time for disk access of input data: 0. 0021581480

Tinme to allocate the data caches for the NAP: 0. 0001240052
Tinme to pack the data for transfer to MAP: 0. 0000198348

Time for MAP all ocation: 0. 5655415718

Tinme for MAP call: 0. 0959882690

Time to unpack results and send to output file: 0. 0059822606
Tinme to free the NAP: 1. 0108668191

Time to free the data arrays: 0. 0000034374

Total Tine: 1.6806843458

Nunber of input sanples: 2048

Time for disk access of input data: 0. 0020997350

Tinme to allocate the data caches for the NAP: 0. 0001187363
Time to pack the data for transfer to MAP: 0. 0000202602

Time for MAP al |l ocation: 0. 5527371586

Time for MAP call: 0. 0959806834

Time to unpack results and send to output file: 0. 0060287457
Tine to free the MAP: 1. 0008449403

Time to free the data arrays: 0. 0000035115

Total Time: 1. 6578337709

106

Nunber of input sanples: 2048

Time for disk access of input data: 0. 0021319420

Tinme to allocate the data caches for the NAP: 0. 0001291689
Tinme to pack the data for transfer to MAP: 0. 0000213944

Time for MAP al |l ocation: 0. 5652251829

Time for MAP call: 0. 0962193980

Time to unpack results and send to output file: 0. 0060068518
Tinme to free the NAP: 1. 0103367549

Time to free the data arrays: 0. 0000033099

Total Tine: 1. 6800740027

Nunber of input sanpl es: 2048

Time for disk access of input data: 0. 0021120040

Tine to allocate the data caches for the NAP: 0. 0001270320
Time to pack the data for transfer to MAP: 0. 0000202671

Time for MAP al |l ocation: 0. 6232019155

Time for MAP call: 0. 0960557450

Time to unpack results and send to output file: 0. 0059984444
Tine to free the MAP: 1. 0108003173

Time to free the data arrays: 0. 0000030409

Total Time: 1.7383187662

Nunber of input sanples: 4096

Time for disk access of input data: 0. 0039900679

Time to allocate the data caches for the NMAP: 0. 0002096794
Time to pack the data for transfer to MAP: 0. 0000459382

Time for MAP all ocati on: 0. 5496688402

Time for MAP call: 0. 0962074068

Tinme to unpack results and send to output file: 0. 0116166790
Time to free the MAP: 1. 0047562273

Time to free the data arrays: 0. 0000039219

Total Time: 1.6664987608

Nurber of input sanples: 4096
Time for disk access of input data: 0. 0039976444
Time to allocate the data caches for the NAP: 0. 0002221994

107

Time to pack the data for transfer to MAP: 0. 0000597746

Time for MAP al |l ocation: 0. 5453757423

Time for MAP call: 0. 0963799618

Time to unpack results and send to output file: 0. 0116735057
Time to free the MAP: 1. 0045205898

Time to free the data arrays: 0. 0000045923

Total Time: 1.6622340104

Nunber of input sanpl es: 4096

Time for disk access of input data: 0. 0040123798

Time to allocate the data caches for the NMAP: 0. 0002263054
Time to pack the data for transfer to MAP: 0. 0000590547

Time for MAP all ocati on: 0. 5631937416

Time for MAP call: 0. 0962763444

Tinme to unpack results and send to output file: 0. 0119604370
Time to free the MAP: 1. 0046578696

Time to free the data arrays: 0. 0000045894

Total Tine: 1. 6803907219

Nurber of input sanples: 4096

Time for disk access of input data: 0. 0039810075

Time to allocate the data caches for the NMAP: 0. 0002196887
Time to pack the data for transfer to MAP: 0. 0000460430

Time for MAP all ocati on: 0. 5485791007

Time for MAP call: 0. 0962252609

Time to unpack results and send to output file: 0.0116839264
Time to free the MAP: 1.0046424461

Time to free the data arrays: 0. 0000035757

Total Tine: 1. 6653810490

Nunber of input sanples: 4096

Time for disk access of input data: 0. 0040224830

Tinme to allocate the data caches for the NAP: 0. 0002064347
Time to pack the data for transfer to MAP: 0. 0000547056

Tinme for MAP all ocati on: 0. 6224038432

Time for MAP call: 0. 0960545790

Time to unpack results and send to output file: 0. 0116945519

108

Tine to free the NAP: 1. 0048462921
Time to free the data arrays: 0. 0000038892
Total Tine: 1.7392867787

Nurber of input sanples: 8192

Time for disk access of input data: 0. 0078223245

Time to allocate the data caches for the NMAP: 0. 0004023044
Time to pack the data for transfer to MAP: 0. 0002119705

Time for MAP all ocati on: 0. 5812084946

Time for MAP call: 0. 0964297191

Time to unpack results and send to output file: 0. 0228781873
Time to free the MAP: 1. 0130009019

Time to free the data arrays: 0. 0000038685

Total Tine: 1.7219577708

Nunber of input sanples: 8192

Tinme for disk access of input data: 0. 0078307251

Tinme to allocate the data caches for the NAP: 0. 0004436297
Time to pack the data for transfer to MAP: 0. 0002067542

Tinme for MAP all ocati on: 0. 5730418858

Time for MAP call: 0. 0966391728

Tinme to unpack results and send to output file: 0. 0230338760
Tinme to free the NAP: 1. 0131350597

Time to free the data arrays: 0. 0000040277

Total Tine: 1.7143351309

Nunber of input sanples: 8192

Time for disk access of input data: 0. 0077393767

Tinme to allocate the data caches for the NAP: 0. 0004243039
Tinme to pack the data for transfer to NMAP: 0. 0001817426

Time for MAP al |l ocation: 0. 6185239698

Time for MAP call: 0. 0966174048

Time to unpack results and send to output file: 0. 0230480030
Tinme to free the NAP: 1. 0029756321

Time to free the data arrays: 0. 0000042630

Total Tine: 1.7495146959

109

Nunber of input sanples: 8192

Time for disk access of input data: 0. 0078371656

Tinme to allocate the data caches for the NAP: 0. 0004584440
Time to pack the data for transfer to MAP: 0. 0002532533

Time for MAP allocation: 0. 5599991367

Time for MAP call: 0. 0966641570

Tinme to unpack results and send to output file: 0. 0232095667
Tinme to free the NAP: 1. 0027152393

Time to free the data arrays: 0. 0000033759

Total Tine: 1. 6911403385

Nunber of input sanples: 8192

Time for disk access of input data: 0. 0077986943

Tinme to allocate the data caches for the NAP: 0. 0004437948
Tinme to pack the data for transfer to NMAP: 0. 0001976624

Time for MAP al |l ocation: 0. 6172022498

Time for MAP call: 0. 0967147538

Time to unpack results and send to output file: 0. 0237511987
Tinme to free the NAP: 1. 0120747115

Time to free the data arrays: 0. 0000037410

Total Tine: 1. 7581868063

Nunber of input sanples: 16384

Time for disk access of input data: 0. 0154911431

Tinme to allocate the data caches for the NAP: 0. 0011080426
Time to pack the data for transfer to MAP: 0. 0008457769

Time for MAP al |l ocation: 0. 5440686744

Time for MAP call: 0. 0972487617

Time to unpack results and send to output file: 0. 0456674025
Tinme to free the NAP: 1. 0098512721

Time to free the data arrays: 0. 0001430044

Total Time: 1.7144240776

Nunber of input sanples: 16384

Time for disk access of input data: 0. 0155376915
Tine to allocate the data caches for the NAP: 0. 0010734378
Time to pack the data for transfer to MAP: 0. 0007945728

110

Tinme for MAP all ocati on: 0. 5509032889

Tinme for MAP call: 0. 0973605433

Time to unpack results and send to output file: 0. 0459777423
Time to free the MAP: 1. 0094799668

Time to free the data arrays: 0. 0001454507

Total Tine: 1.7212726941

Nunber of input sanples: 16384

Time for disk access of input data: 0. 0154718570

Tinme to allocate the data caches for the NAP: 0. 0010781133
Time to pack the data for transfer to MAP: 0. 0008486386

Time for MAP al |l ocation: 0. 6051188154

Time for MAP call: 0. 0972983311

Time to unpack results and send to output file: 0. 0458111949
Time to free the MAP: 1. 0094288469

Time to free the data arrays: 0. 0001662607

Total Time: 1. 7752220580

Nunber of input sanples: 16384

Time for disk access of input data: 0. 0154333424

Time to allocate the data caches for the NMAP: 0. 0011713841
Time to pack the data for transfer to MAP: 0. 0008559671

Time for MAP all ocati on: 0. 6519303209

Time for MAP call: 0. 0973521378

Tinme to unpack results and send to output file: 0. 0459583633
Time to free the MAP: 1. 0095304322

Time to free the data arrays: 0. 0001494944

Total Time: 1. 8223814423

Nurmber of input sanples: 16384

Time for disk access of input data: 0. 0152250228

Time to allocate the data caches for the NAP: 0. 0011885736
Time to pack the data for transfer to MAP: 0. 0010387779

Time for MAP all ocati on: 0. 6485815154

Time for MAP call: 0. 0975391807

Time to unpack results and send to output file: 0. 0464225369
Time to free the MAP: 1. 0087604537

111

Time to free the data arrays: 0.0001434464
Total Tine: 1.8188995075

Nunber of input sanples: 32768

Time for disk access of input data: 0. 0316404635

Time to allocate the data caches for the MAP: 0. 0034781572
Time to pack the data for transfer to MAP: 0. 0029248423

Time for MAP all ocati on: 0. 6252940828

Time for MAP call: 0. 0988847446

Time to unpack results and send to output file: 0. 0913046420
Time to free the MAP: 1. 0023308353

Time to free the data arrays: 0. 0002494756

Total Tine: 1. 8561072433

Nurmber of input sanples: 32768

Time for disk access of input data: 0. 0305634427

Time to allocate the data caches for the NAP: 0. 0022265891
Time to pack the data for transfer to MAP: 0. 0023904122

Time for MAP all ocati on: 0. 5508623337

Tinme for MAP call: 0. 0992578574

Time to unpack results and send to output file: 0. 0917728660
Time to free the MAP: 1.0118414713

Time to free the data arrays: 0. 0002532977

Total Tine: 1.7891682702

Nunber of input sanples: 32768

Time for disk access of input data: 0. 0307901613

Tinme to allocate the data caches for the NAP: 0. 0022666832
Time to pack the data for transfer to MAP: 0. 0033268828

Time for MAP allocation: 0. 5559343584

Time for MAP call: 0. 0989380410

Time to unpack results and send to output file: 0. 0916615997
Time to free the NAP: 1. 0122256754

Time to free the data arrays: 0. 0002460956

Total Tine: 1. 7953894975

Nunber of input sanples: 32768

112

Time for disk access of input data: 0.0311453124

Time to allocate the data caches for the NMAP: 0. 0022655370
Time to pack the data for transfer to MAP: 0. 0023452306

Tinme for MAP all ocati on: 0. 5423111092

Time for MAP call: 0. 0989094210

Time to unpack results and send to output file: 0. 0934043771
Time to free the MAP: 1. 0106256046

Time to free the data arrays: 0. 0002398184

Total Tine: 1.7812464102

Nunber of input sanples: 32768

Tinme for disk access of input data: 0. 0303366007

Tinme to allocate the data caches for the NAP: 0. 0023124818
Time to pack the data for transfer to MAP: 0.0021618444

Tinme for MAP all ocati on: 0. 5487904255

Time for MAP call: 0. 0987779063

Time to unpack results and send to output file: 0.0917617551
Tinme to free the MVAP: 1. 0123094293

Time to free the data arrays: 0. 0002469738

Total Time: 1. 7866974169

Nunber of input sanples: 65536

Time for disk access of input data: 0. 0642365906

Tinme to allocate the data caches for the NAP: 0. 0049776484
Tinme to pack the data for transfer to MAP: 0. 0047179230

Time for MAP al |l ocation: 0. 5696820675

Time for MAP call: 0. 1021540966

Time to unpack results and send to output file: 0. 1828584631
Tinme to free the NAP: 1. 0077824403

Time to free the data arrays: 0. 0004443910

Total Tine: 1. 9368536205

Nunber of input sanples: 65536

Time for disk access of input data: 0. 0609015811

Tinme to allocate the data caches for the NAP: 0. 0075692546
Time to pack the data for transfer to MAP: 0. 0054795219
Time for MAP al |l ocation: 0. 5880060163

113

Tinme for MAP cal | : 0.1020899076

Tinme to unpack results and send to output file: 0. 1833274872
Tinme to free the NAP: 1. 0068394203

Time to free the data arrays: 0. 0004423104

Total Tine: 1. 9546554993

Nunber of input sanples: 65536

Time for disk access of input data: 0. 0635116564

Tinme to allocate the data caches for the NAP: 0. 0055077909
Tinme to pack the data for transfer to MAP: 0. 0046081302

Time for MAP al |l ocation: 0. 5434199974

Time for MAP call: 0. 1022932166

Time to unpack results and send to output file: 0. 1835829851
Tinme to free the NAP: 1. 0065619061

Time to free the data arrays: 0. 0004432341

Total Tine: 1.9099289168

Nunber of input sanples: 65536

Time for disk access of input data: 0. 0602645045

Tinme to allocate the data caches for the NAP: 0. 0064083445
Time to pack the data for transfer to MAP: 0. 0063568686

Time for MAP al |l ocation: 0. 5564223806

Time for MAP call: 0. 1022868127

Time to unpack results and send to output file: 0. 1841379679
Tine to free the MAP: 1. 0061306859

Time to free the data arrays: 0. 0004438511

Total Time: 1. 9224514159

Nunber of input sanples: 65536

Time for disk access of input data: 0. 0603332552

Time to allocate the data caches for the NMAP: 0. 0076104885
Time to pack the data for transfer to MAP: 0. 0053092038

Time for MAP all ocati on: 0. 5615856629

Time for MAP call: 0.1317872155

Time to unpack results and send to output file: 0. 1840570403
Time to free the MAP: 1. 0066493416

Time to free the data arrays: 0. 0004394368

114

Total Ti ne: 1.9577716446

Nunber of input sanples: 131072

Time for disk access of input data: 0. 1220448297

Tinme to allocate the data caches for the NAP: 0. 0093876077
Time to pack the data for transfer to MAP: 0.0089142388

Time for MAP al |l ocation: 0. 7330934388

Time for MAP call: 0. 1090398467

Time to unpack results and send to output file: 0.6348346174
Tinme to free the NAP: 1. 0086661741

Time to free the data arrays: 0. 0009079930

Total Time: 2.6268887462

Nunber of input sanples: 131072

Time for disk access of input data: 0.1201003324

Time to allocate the data caches for the NMAP: 0. 0093825150
Time to pack the data for transfer to MAP: 0. 0089177907

Time for MAP all ocati on: 0. 5360358666

Time for MAP call: 0.1088606189

Time to unpack results and send to output file: 0. 5496880324
Time to free the MAP: 1. 0040097385

Time to free the data arrays: 0. 0009155073

Total Tine: 2.3379104019

Nurber of input sanples: 131072

Time for disk access of input data: 0. 1229936327

Time to allocate the data caches for the NAP: 0. 0093958263
Time to pack the data for transfer to MAP: 0. 0088779075

Time for MAP all ocati on: 0. 5349584831

Time for MAP call: 0. 1089405220

Time to unpack results and send to output file: 0. 6081954039
Time to free the MAP: 1. 0055497212

Time to free the data arrays: 0. 0009038526

Total Tine: 2.3998153493

Nunber of input sanples: 131072
Time for disk access of input data: 0. 1227266786

115

Time to allocate the data caches for the NMAP:
Time to pack the data for transfer to MAP:

Time for MAP all ocati on: 0. 5336023561
Time for MAP call: 0. 1086331309

Tinme to unpack results and send to output file:
Time to free the MAP: 1. 0175269860
Time to free the data arrays:

Total Tinme: 2.4780320070

Nurber of input sanples: 131072

Time for disk access of input data:

Time to allocate the data caches for the NMAP:
Time to pack the data for transfer to MAP

Time for MAP all ocati on: 0. 5939230269
Time for MAP call: 0. 1088982179

Time to unpack results and send to output file:
Time to free the MAP: 1.0194287639
Time to free the data arrays:

Total Tine: 2. 4757970710
Nunber of input sanples: 262144
Ti
Ti
Ti
Ti for MAP all ocati on:

me
me
me

Time for MAP call:
me
me
me

3

for disk access of input data:
to allocate the data caches for the MAP
to pack the data for transfer to MAP

0. 6893795544
0.1218434373
Ti
Ti
Ti

to free the MAP
to free the data arrays:
3.2944207134

1. 0097043914

Total Time:

Nunber of input sanples: 262144
Time for disk access of input data:
Tinme to allocate the data caches for the MAP
Time to pack the data for transfer to MAP:

0. 5352123523
0. 1242827591

Tinme for MAP all ocation
Tinme for MAP call

116

0. 0009064127

0. 0009110189

to unpack results and send to output file:

0.0017815761

0. 0094592113
0. 0088770638

0. 6763001675

0. 1200560762

0. 0093610427
0. 0089234996

0. 6142954248

0. 2439861309

0. 0188529759
0. 0178578915

1.1910147560

0. 2439314867

0.0188461833
0. 0178297551

Time to unpack results and send to output file: 1. 3234282694

Time to free the MAP: 1.0119794117
Time to free the data arrays: 0. 0017971567
Total Tine: 3.2773073744

Nunber of input sanples: 262144

Time for disk access of input data: 0. 2399882292

Tinme to allocate the data caches for the NAP: 0. 0188378134
Time to pack the data for transfer to MAP: 0.0179187362

Tinme for MAP all ocati on: 0. 5406684882

Time for MAP call: 0.1219761128

Tinme to unpack results and send to output file: 1. 2522615479
Tinme to free the NAP: 1. 0082841585

Time to free the data arrays: 0. 0017902603

Total Tinme: 3. 2017253466

Nunber of input sanples: 262144

Time for disk access of input data: 0. 2455214649

Tinme to allocate the data caches for the NAP: 0. 0190074293
Tinme to pack the data for transfer to MAP: 0. 0178621577

Time for MAP all ocation: 0. 5320163383

Tinme for MAP call: 0.1217802391

Time to unpack results and send to output file: 1. 2010226196
Tinme to free the NAP: 1.0097881788

Time to free the data arrays: 0.0018161935

Total Tine: 3.1488146211

Nunber of input sanples: 262144

Time for disk access of input data: 0. 2401958352

Tinme to allocate the data caches for the NAP: 0. 0190414892
Time to pack the data for transfer to MAP: 0.0178416384

Time for MAP al |l ocation: 0. 5350196342

Time for MAP call: 0. 1220957637

Time to unpack results and send to output file: 1. 2980060737
Time to free the MAP: 1. 0024299308

Time to free the data arrays: 0. 0018355162

Total Time: 3. 2364658814

117

Nunber of input sanpl es: 500000

Time for disk access of input data: 0. 4576555924

Tinme to allocate the data caches for the NAP: 0. 0357430988
Tinme to pack the data for transfer to MAP: 0. 0341176347

Time for MAP al |l ocation: 0. 5400339917

Time for MAP call: 0. 1453687382

Time to unpack results and send to output file: 2.2802877245
Tinme to free the NAP: 1. 0271661955

Time to free the data arrays: 0. 0034380277

Total Tine: 4.5238110034

Nunber of input sanples: 500000

Time for disk access of input data: 0. 4639648099

Time to allocate the data caches for the NMAP: 0. 0356763230
Time to pack the data for transfer to MAP: 0. 0341234227

Time for MAP al |l ocation: 0. 5855113962

Time for MAP call: 0. 1453061264

Time to unpack results and send to output file: 2.4983290645
Tinme to free the NAP: 1. 0092234109

Time to free the data arrays: 0. 0034494809

Total Time: 4.7755840344

Nunber of input sanpl es: 500000

Time for disk access of input data: 0. 4578109535

Time to allocate the data caches for the NMAP: 0. 0359110724
Time to pack the data for transfer to MAP: 0. 0339820569

Time for MAP all ocati on: 0. 5354018536

Time for MAP call: 0. 1452250762

Time to unpack results and send to output file: 2.6184729122
Time to free the MAP: 1.0091233435

Time to free the data arrays: 0. 0034339475

Total Time: 4.8393612159

Nunber of input sanples: 500000
Time for disk access of input data: 0. 4575756039
Time to allocate the data caches for the NAP: 0. 0357971735

118

Time to pack the data for transfer to MAP:

Time for MAP al |l ocation: 0. 5455715893

Time for MAP call: 0. 1451846370

Time to unpack results and send to output file:
Tine to free the MAP: 1. 0357822277

Time to free the data arrays: 0. 0033822233
Total Time: 4.6791055732

Nunber of input sanples: 500000

0. 0339763491

2.4218357695

Time for disk access of input data: 0. 4678256030

Tinme to allocate the data caches for the NAP: 0. 0413532404
Time to pack the data for transfer to MAP: 0. 0363923355
Time for MAP allocation: 0. 5508184513

Time for MAP call: 0. 1455726750

Tinme to unpack results and send to output file: 2.2853761229
Tinme to free the NAP: 1. 0018905374

Time to free the data arrays: 0. 0033834348

Total Tine: 4.5326124002

B. SRC- 6E C PROGRAM DATA

Time to conplete 32 sanples: 0.1400 seconds.

Time to conplete 32 sanples: 0.1300 seconds.

Time to conplete 32 sanples: 0.1300 seconds.

Time to conplete 32 sanples: 0.1300 seconds.

Tinme to conplete 32 sanpl es: 0.1400 seconds.

Time to conplete 64 sanples: 0.1400 seconds.

Time to conplete 64 sanples: 0.1200 seconds.

Time to conplete 64 sanples: 0.1200 seconds.

Time to conplete 64 sanples: 0.1100 seconds.

Tinme to conplete 64 sanples: 0.1200 seconds.

Time to conplete 128 sanples: 0.1200 seconds.

Time to conplete 128 sanples: 0.1200 seconds.

Time to conplete 128 sanples: 0.1200 seconds.

Time to conplete 128 sanples: 0.1500 seconds.

Tinme to conplete 128 sanpl es: 0.1200 seconds.

Time to conpl ete 256 sanples: 0.1200 seconds.

Time to conplete 256 sanples: 0.1200 seconds.

Time to conplete 256 sanples: 0.1200 seconds.

119

Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti

3 33 33 3 cd 833333 3883333 338333333 B P D333 I D

conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete

256 s
256 s
512 s
512 s
512 s
512 s
512 s
1024
1024
1024
1024
1024
2048
2048
2048
2048
2048
4096
4096
4096
4096
4096
8192
8192
8192
8192
8192
16384
16384
16384
16384
16384
32768
32768
32768
32768
32768

anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

o O O O o o o

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

1
1
1
1
1
1
1
. 1200
. 1200
. 1200
. 1300
. 1200
. 1200
. 1300
. 1300
. 1200
. 1300
. 1300
. 1300
. 1300
. 1400
. 1400
. 1500
. 1500
. 1500
. 1500
. 1500

O O O O O O O O O O O O 0o oo o o o o o

© 0 0 0 0 o0 o0 o0 00

200 s
200 s
200 s
200 s
200 s
200 s
200 s

2100
1800
1600
1800
1800
2600
2500
2600
2600
2600

120

econds.
econds.
econds.
econds.
econds.
econds.
econds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.

seconds.

T
T
T
T
T
T
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti

T
T
T
T
T
T
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti

T 3 3 33 3 a8 833333 3BT 3 3 I

3 3 3 33 3 cd 83333 3 3 o o

conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete

655
655
655
655
655
131
131
131
131
131
262
262
262
262
262
500
500
500
500
500

36 sanpl es:
36 sanpl es:
36 sanmpl es:
36 sanmpl es:
36 sanpl es:

072 sanmpl es:
072 sanpl es:
072 sanpl es:
072 sanpl es:
072 sanpl es:
144 sanpl es:
144 sanpl es:
144 sanpl es:
144 sanpl es:
144 sanpl es:
000 sanpl es:
000 sanpl es:
000 sanpl es:
000 sanpl es:
000 sanpl es:

0. 38
0.35
0.35
0.35
0. 37
.6
.6
.6
.6
.6
1
.0
.2
1
1
.0
.0
.0
.0
.0

N N NN DNPFPF P PP PO OO O O

W NDOWS C PROGRAM DATA

to
to
to
to
to
to
to
to
to
to
to

to

conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete

32
32
32
32
32
64
64
64
64
64
128
128
128
128
128
256

o

sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

© oo o000 00

sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

o O O O o o

sanpl es:

. 0310

0460
0460
0460
0460
0460
0460
0460
0460

. 0460

. 0310
. 0460
. 0460
. 0460
. 0460
. 0460

00 seconds.
00 seconds.
00 seconds.
00 seconds.
00 seconds.
000 seconds.
700 seconds.
600 seconds.
300 seconds.
100 seconds.
200 seconds.
700 seconds.
800 seconds.
300 seconds.
800 seconds.
300 seconds.
400 seconds.
400 seconds.
300 seconds.

700 seconds.

seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.

seconds.

121

T
T
T
T
T
T
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti

3 33 33 3 cd 833333 3883333 338333333 B P D333 I D

conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete

256 s
256 s
256 s
256 s
512 s
512 s
512 s
512 s
512 s
1024
1024
1024
1024
1024
2048
2048
2048
2048
2048
4096
4096
4096
4096
4096
8192
8192
8192
8192
8192
16384
16384
16384
16384
16384
32768
32768
32768

anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
anpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

O O O O O O O O o

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

sanpl es:

.0
.0
.0
.0
.0
.0
.0
.0
. 0620 seconds.
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0620
. 0780
. 0780
. 0930
. 0930
. 0930
. 0930

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

© oo oo oo0o0

460 s
460 s
620 s
620 s
460 s
460 s
460 s
460 s

0930
. 1240
1240
1400
1400
1400
. 2030
. 2180
. 2180

122

econds.
econds.
econds.
econds.
econds.
econds.
econds.

econds.

seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.

seconds.

Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti
Ti

3 33 33 3 ad 833333 3883333 3 B

conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete
conpl ete

32768
32768
65536
65536
65536
65536
65536
131072
131072
131072
131072
131072
262144
262144
262144
262144
262144
500000
500000
500000
500000
500000

sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:
sanpl es:

sanpl es:

©O ©O o O 0o o O

w W NN NP P PP PO O O O o

. 2180

2180
3280
3430

. 3430
. 3430
. 4370

. 5780
. 5780
. 5930
. 5930
. 5930
. 0620
. 0780
. 0780
. 0780
. 1240
. 0310
. 0310
. 8900
. 1710
. 1710

123

seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.
seconds.

seconds.

TH'S PAGE | NTENTI ONALLY LEFT BLANK

124

LI ST OF REFERENCES

[1] David Caliga and David Peter Barker, “Delivering Accel -
eration: The Potential for Increased HPC Application Per-
formance Using Reconfigurable Logic,” ACM 1-58113-293-

X/ 01/ 0011, Novenber 2001.

[2] “SRC-6E MAP© Har dware Gui de,” SRC-005-03, SRC Com
puters, Inc., Colorado Springs, January 6, 2003.

[3] “Virtex-11 Platform FPGAs: Conpl ete Data Sheet, DC and
Swi tching Characteristics,” DS031-3 (v3.1), Xilinx, Inc.,
San Jose, CA, COctober 14, 2003. From website:
http://direct.xilinx.com bvdocs/ publications/ds031. pdf, ac-
cessed Decenber 2003.

[4] “SRC-6E C Progranm ng Environnent V1.5 CGuide,” SRC-007-
08, SRC Conputers Inc., Colorado Springs, Septenber 5,
2003.

[5] “SRC-6E Fortran Progranm ng Environnment V1.5 Cuide,”
SRC- 006- 08, SRC Conputers Inc., Colorado Springs, Septenber
5, 20083.

[6] “SRC-6E MAPO Macro Devel opers Guide,” SRC-008-01, SRC
Computers Inc., Colorado Springs, Septenber 23, 2002.

[7] “SRC-6E Programm ng Environnent V1.5 Technical Note:
Supported Macros,” SRC Conputers Inc., Colorado Springs,
Septenber 5, 20083.

[8] Charles H Roth, Jr., Digital Systems Design Using
VHDL, PWS Publ i shi ng Conpany, Boston, 1998.

[9] Aut hor Unknown. Unpublished project notes from previ-

ous work. Naval Postgraduate School .

125

TH'S PAGE | NTENTI ONALLY LEFT BLANK

126

| NI TI AL DI STRI BUTI ON LI ST

. Defense Technical |Infornmati on Center

Ft. Belvoir, Virginia

. Dudl ey Knox Library
Naval Postgraduate School
Monterey, California

. Chai rman, Code EC

Department of El ectrical and Conputer Engi neering
Naval Postgraduate School

Monterey, California

. Al an Hunsber ger
National Security Agency
Ft. Meade, MD

. Dr. Russell Duren
Bayl or University

Engi neeri ng Depart nent
Rogers, TX

127

